Andrew Ng-ML-第十七章-推荐系统】的更多相关文章

1.问题规划  图1.推荐系统在研究什么? 例子:预测电影的评分. 当知道n_u用户数,n_m电影数:r(i,j)用户j评价了电影i,那么就是1:y(i,j)如果r(i,j)为1,那么就给出评分. 问题就是根据现有数据训练学习算法,预测未评分的电影. 2.基于内容的推荐算法 图2.基于内容的推荐系统 对5部电影进行类型分析,有两个指标x_1,x_2,分别是爱情.动作,加上x_0之后形成指标. 从线性回归的角度来说,对每一个用户训练一个回归模型,每个用户都对应系数,对用户1Alice的参数[0,5…
一.多变量线性回归的技巧之一——特征缩放 1.为什么要使用特征缩放? 特征缩放用来确保特征值在相似的范围之内. 设想这样一种情况(房价预测),两个特征值分别是房子的大小和卧室的数量.每个特征值所处的范围差别很大,其代价函数 的等高线图如下图所示.图像会又瘦又高,这样才利用梯度下降法时需要经过很长时间才会收敛.故使用特征缩短来缩短梯度下降算法的收敛时间. 2.特征缩放的基本思想是什么? 将每一个特征值归一化.例如房子大小x所在的区间是(0,500),将x除以500.这样得到等值图就会比较圆润,梯度…
一些概念: 向量:向量在矩阵中表示为只有一列的矩阵 n维向量:N行1列的矩阵. 利用矩阵计算可以快速实现多种结果的计算. 如下图,给出四个房子大小的样本,有四个假设函数对房子价格进行预测.构造下面的矩阵计算式子,可以很快每一个房子样本大小对于不同假设函数的预测结果,一共12个结果.第一列表示所有样本针对第一个预测模型的结果.简而言之,一次矩阵乘法运算就可以得出12中预测结果.…
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第五章应用机器学习的建议,主要介绍了在测试新数据出现较大误差该怎么处理,这期间讲到了数据集的分类,偏差,方差,学习曲线等概念,帮…
Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.html 前言 这篇博客主要记录了Andrew Ng课程第6章机器学习系统的设计,Andrew用他的丰富经验讲述了如何有效.耗时少地实现一个机器学习系统,内容包括误差分析,误差度量,查准率和查全率等等 I 首先要做什么 以一个垃圾邮件分类器算法为例,为了解决这样一个问题,我们首先要做的决定是如何选择并…
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录Andrew Ng课程第四章和第五章的神经网络,主要介绍前向传播算法,反向传播算法,神经网络的多类分类,梯度校验,参数随机初始化,参数的更新等等 1.神经网络概述…
Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录Andrew Ng课程第三章正则化,主要介绍了线性回归和逻辑回归中,怎样去解决欠拟合和过拟合的问题 简要介绍:在进行线性回归或逻辑回归时,常常会出现以下三种情况 回归…
大概用了一个月,Andrew Ng老师的机器学习视频断断续续看完了,以下是个人学习笔记,入门级别,权当总结.笔记难免有遗漏和误解,欢迎讨论. 鸣谢:中国海洋大学黄海广博士提供课程视频和个人笔记,在此深表感谢!…
最近翻Peter Harrington的<机器学习实战>,看到Logistic回归那一章有点小的疑问. 作者在简单介绍Logistic回归的原理后,立即给出了梯度上升算法的code:从算法到代码跳跃的幅度有点大,作者本人也说了,这里略去了一个简单的数学推导. 那么其实这个过程在Andrew Ng的机器学习公开课里也有讲到.现在回忆起来,大二看Andrew的视频的时候心里是有这么一个疙瘩(Andrew也是跳过了一步推导) 这里就来讲一下作者略去了怎样的数学推导,以及,怎么推导. 在此之前,先回顾…
这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可见,如购物推荐.影视推荐等.课程链接为:https://www.coursera.org/course/ml (一)异常检测(Anomaly Detection) 举个栗子: 我们有一些飞机发动机特征的sample:{x(1),x(2),...,x(m)},对于一个新的样本xtest,那么它是异常数…
matlab基础教程--根据Andrew Ng的machine learning整理 基本运算 算数运算 逻辑运算 格式化输出 小数位全局修改 向量和矩阵运算 矩阵操作 申明一个矩阵或向量 快速建立一个矩阵或向量 随机矩阵方阵生成 magic矩阵生成(每行每列相加和相同) 获取矩阵的维度size 获取矩阵的最大维度length 矩阵操作.获取单个元素.行.列.赋值 矩阵append.矩阵元素放到一个列向量中 矩阵运算 矩阵乘法 A*C:根据矩阵乘法公式相乘. A .* B:矩阵元素对应相乘. 矩…
最近算是一段空闲期,不想荒废,记得之前有收藏一个机器学习的链接Andrew Ng的网易公开课,其中的overfiting部分做组会报告时涉及到了,这几天有时间决定把这部课程学完,好歹算是有个粗浅的认识. 本来想去网上查一查机器学习的书籍,发现李航的<统计学习方法>和PRML(Pattern Recognition And Machine Learning)很受人推崇,有空再看吧. 然后在图书馆碰到了天佑,给我推荐了coursera这个网站,上面有Andrew Ng针对网络版的机器学习教程,挺好…
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归&正规公式) Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数) Andrew Ng机器学习课程笔记--week4(神经网络) Andrew Ng机器学习课程笔记--week5(上)(神经网络损失函数&反向传播算法) Andrew Ng机器学习课程笔记--week5(下)(…
Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第二章逻辑回归,主要介绍了梯度下降法,逻辑回归的损失函数,多类别分类等等 简要介绍:逻辑回归算法是分类算法,我们将它作为分类算法使用.有时候…
Andrew Ng机器学习课程笔记(一)之线性回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第一章线性回归,主要介绍了梯度下降法,正规方程,损失函数,特征缩放,学习率的选择等等 1.梯度下降法 原理图解: (1)  目标:最小化建立…
本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以及应用实例:photo OCR.课程地址为:https://www.coursera.org/course/ml (一)大规模机器学习 从前面的课程我们知道,如果我们的系统是high variance的,那么增加样本数会改善我们的系统,假设现在我们有100万个训练样本,可想而知,如果使用梯度下降法,…
本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml  (一)K-means聚类算法 Input data:未标记的数据集,类别数K: 算法流程: 首先随机选择K个点,作为初始聚类中心(cluster centroids): 计算数据集中每个数据与…
本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.coursera.org/course/ml 大家对于支持向量机(SVM)可能会比较熟悉,是个强大且流行的算法,有时能解决一些复杂的非线性问题.我之前用过它的工具包libsvm来做情感分析的研究,感觉效果还不错.NG在进行SVM的讲解时也同样建议我们使用此类的工具来运用SVM. (一)优化目标(Opt…
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了两个星期来介绍,可见Neural Networks内容之多.言归正传,通过之前的学习我们知道,使用非线性的多项式能够帮助我们建立更好的分类模型.但当遇特征非常多的时候,需要训练的参数太多,使得训练非常复杂,使得逻辑回归有心无力. 例如我们有100个特征,如果用这100个特征来构建一个非线性的多项式模…
本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解决不了或效果不佳时人工神经网络方法才能显示出其优越性.尤其对问题的机理不甚了解或不能用数学模型表示的系统,如故障诊断.特征提取和预测等问题,人工神经网络往往是最有利的工具.另一方面, 人工神经网络对处理大量原始数据而不能用规则或公式描述的问题, 表现出极大的灵活性和自适应性. 神经网络模型解决问题的…
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名词在后续课程中会频繁出现: Cost Function Linear Regression Gradient Descent Normal Equation Feature Scaling Mean normalization 损失函数 线性回归 梯度下降 正规方程 特征归一化 均值标准化 Mode…
coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regression方法进行ctr的预测工作,因为当时主要使用的是成型的工具,对该算法本身并没有什么比较深入的认识,不过可以客观的感受到Logistic Regression的商用价值. Logistic Regression Model A. objective function       其中z的定义域是(-I…
最近学习了coursera上面Andrew NG的Machine learning课程,课程地址为:https://www.coursera.org/course/ml 在Introduction部分NG较为系统的概括了Machine learning的一些基本概念,也让我接触了一些新的名词,这些名词在后续课程中会频繁出现: Machine Learning Supervised Learning Unsupervised Learning Regression Problem Classifi…
斯坦福大学机器学习 课程信息 机器学习是一门研究在非特定编程条件下让计算机采取行动的学科.最近二十年,机器学习为我们带来了自动驾驶汽车.实用的语音识别.高效的网络搜索,让我们对人类基因的解读能力大大提高.当今机器学习技术已经非常普遍,您很可能在毫无察觉情况下每天使用几十次.许多研究者还认为机器学习是人工智能(AI)取得进展的最有效途径.在本课程中,您将学习最高效的机器学习技术,了解如何使用这些技术,并自己动手实践这些技术.更重要的是,您将不仅将学习理论知识,还将学习如何实践,如何快速使用强大的技…
这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解和初步掌握机器学习的人来说是不二的选择.这门课程涵盖了机器学习的一些基本概念和方法,同时这门课程的编程作业对于掌握这些概念和方法起到了巨大的作用. 课程地址 https://www.coursera.org/learn/machine-learning 笔记主要是简要记录下课程内容,以及MATLAB…
出处 以下内容转载于 网友 Fiona Duan,感谢作者分享 (原作的图片显示有问题,所以我从别处找了一些附上,小伙伴们可以看看).最近越来越觉得人工智能,深度学习是一个很好的发展方向,应该也是未来科技的关键核心. 隆重分享,中科院自动化所录制的视频:http://pan.baidu.com/s/1c0vjEIc(英文的,没有中文字幕,考听力了) 7月7日,笔者有幸在中科院自动化所现场听取了Andrew Ng以<Deep Learning:Overview and Trends>的精彩演讲.…
机器学习的定义 Arthur Samuel给出的定义,Field of Study that gives computers the ability to learn without being explicitly programmed.(在不直接针对问题进行编程的情况下,赋予计算机学习能力的一个研究领域) Tom Mitchell给出的定义,A computer program is said to learn from experience E with respect to some t…
进击的Python[第十七章]:jQuery的基本应用…
<构建之法>第十三章到十七章有感 第13章:软件测试方法有哪些? 主要讲了软件测试方法:要说有什么问题就是哪种效率最高? 第14章:质量保障 软件的质量指标是什么?怎么样能够提升软件的质量? 第15章:稳定和发布阶段 软件的发布是要有很多步骤的,需要注意哪些问题呢? 第16章:IT行业的创新 创新一般是要有一定的基础才行的,那么怎么样能够让自己的创新能力发挥出来? 第17章:人,绩效和职业道德 我们以后如果从事这个行业的,那么需要有什么职业道德? 我读了<一个程序员的生命周期>之后…
第三十六~三十七章.搜索智能提示suggestion,附近地点搜索 作者:July.致谢:caopengcs.胡果果.时间:二零一三年九月七日. 题记 写博的近三年,整理了太多太多的笔试面试题,如微软面试100题系列,和眼下这个程序员编程艺术系列,真心觉得题目年年变,但解决问题的方法永远都是那几种,用心准备后,自会发现一切有迹可循. 故为更好的帮助人们找到工作,特准备在北京举办一系列面试&算法讲座.时间定为周末,每次一个上午或下午,受众对象为要找工作或换工作或对算法感兴趣的朋友,费用前期暂愿交就…