tf.argmax】的更多相关文章

referrence: 莫烦视频 先介绍几个函数 1.tf.cast() 英文解释: 也就是说cast的直译,类似于映射,映射到一个你制定的类型. 2.tf.argmax 原型: 含义:返回最大值所在的坐标.(谁给翻译下最后一句???) ps:谁给解释下axis最后一句话? 例子: 3.tf.reduce_mean() 原型: 含义:一句话来说就是对制定的reduction_index进行均值计算. 注意,reduction_indices为0时,是算的不同的[]的同一个位置上的均值 为1是是算…
首先,明确一点,tf.argmax可以认为就是np.argmax.tensorflow使用numpy实现的这个API.    简单的说,tf.argmax就是返回最大的那个数值所在的下标.    这个很好理解,只是tf.argmax()的参数让人有些迷惑,比如,tf.argmax(array, 1)和tf.argmax(array, 0)有啥区别呢?    这里面就涉及到一个概念:axis.上面例子中的1和0就是axis.我先笼统的解释这个问题,设置axis的主要原因是方便我们进行多个维度的计算…
1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参数说明:x,y表示需要比较的两组数 3.tf.cast(y, 'float') # 将布尔类型转换为数字类型 参数说明:y表示输入的数据,‘float’表示转换的数据类型 4.tf.argmax(y, 1) # 返回每一行的最大值的索引 参数说明:y表示输入数据,1表示每一行的最大值的索引,0表示每…
tf.argmax(input, axis=None, name=None, dimension=None) Returns the index with the largest value across axis of a tensor. input is a Tensor and axis describes which axis of the input Tensor to reduce across. For vectors, use axis = 0. For your specifi…
转载请注明出处:http://www.cnblogs.com/willnote/p/6758953.html 官方API定义 tf.argmax(input, axis=None, name=None, dimension=None) Returns the index with the largest value across axes of a tensor. Args: input: A Tensor. Must be one of the following types: float32…
tf.argmax(input, dimension, name=None) 参数: input:输入数据 dimension:按某维度查找. dimension=0:按列查找: dimension=1:按行查找: 返回: 最大值的下标 a = tf.constant([1.,2.,3.,0.,9.,]) b = tf.constant([[1,2,3],[3,2,1],[4,5,6],[6,5,4]]) with tf.Session() as sess: sess.run(tf.argmax…
关于tensorflow里多维数组(主要是四维)的组织形式之前一直没弄懂,最近遇到相关问题,算是搞清楚了一些东西,特别记下来,免得自己又遗忘了. 三维形式能很简单的脑补出来三维的形状,不再赘述. 之前一直纠结四维的时候数据是怎样填充的.特别是遇到深度学习的时候输入都是[batch,height,width,channel],这种四维的张量的时候,是怎样个数据的形状. 先看代码: prediction2 = tf.constant([1,2,3,4,5,6,7,8,9,13,14,14,15,1,…
1.  tf.split(3, group, input)  # 拆分函数    3 表示的是在第三个维度上, group表示拆分的次数, input 表示输入的值 import tensorflow as tf import numpy as np x = [[1, 2], [3, 4]] Y = tf.split(axis=1, num_or_size_splits=2, value=x) sess = tf.Session() for y in Y: print(sess.run(y))…
tf.argmax(input, axis=None, name=None, dimension=None) 此函数是对矩阵按行或列计算最大值   参数 input:输入Tensor axis:0表示按列,1表示按行 name:名称 dimension:和axis功能一样,默认axis取值优先.新加的字段 返回:Tensor  一般是行或列的最大值下标向量   例:…
tf.argmax(input,axis)根据axis取值的不同返回每行或者每列最大值的索引. 代码如下: import tensorflow as tfimport numpy as npsess=tf.Session()a = np.array([[1, 2, 3], [2, 3, 4], [5, 4, 3], [8, 7, 2]])a0=tf.argmax(a,axis=0)a1=tf.argmax(a,axis=1)a0=sess.run(a0)a1=sess.run(a1)b = np…
[Tensorflow] tf.equal(tf.argmax(y, 1),tf.argmax(y_, 1))用法 作用:输出正确的预测结果利用tf.argmax()按行求出真实值y_.预测值y最大值的下标,用tf.equal()求出真实值和预测值相等的数量,也就是预测结果正确的数量,tf.argmax()和tf.equal()一般是结合着用. 具体讲解:correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) 1.tf.e…
tf.argmax()函数原型: def argmax(input, axis=None, name=None, dimension=None, output_type=dtypes.int64) 作用是返回每列/行的最大值的索引. input是一个张量, axis是0或1,0返回各列最大值索引,1返回各行最大值索引. 其他3个参数不常用,常用写法是 a = tf.argmax(tensor, 1). import tensorflow as tf sess = tf.InteractiveSe…
1.返回值 vector为向量,返回行或列的最大值的索引号: vector为矩阵,返回值是向量,返回每行或每列的最大值的索引号. 2.参数 vector为向量或者矩阵 axis = 0 或1 0:返回vector中每列的最大值的索引号 1:返回vector中每行的最大索引号 3.例子 import numpy as npimport tensorflow as tfa=np.array([[1,2,3]])with tf.Session() as sess:    print(sess.run(…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) lr=0.001 training_iters=100000 batch_size=128 n_inputs=28 n_steps=28 n_hidden_units=128 n_classes=10 x=tf…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # number 1 to 10 data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) def compute_accuracy(v_xs, v_ys): global prediction y_pre = sess.run(prediction, fe…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # number 1 to 10 data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) def add_layer(inputs, in_size, out_size, activation_function=None,): # add one more…
命名空间及变量共享 # coding=utf-8 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt; with tf.variable_scope('V1') as scope: a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1)) scope.reuse_variables() a3…
1. tf.nn.embedding_lookup(W, X) W的维度为[len(vocabulary_list), 128], X的维度为[?, 8],组合后的维度为[?, 8, 128] 代码说明一下:即根据每一行X中的一个数,从W中取出对应行的128个数据,比如X[1, 3]个数据是3062,即从W中的第3062行取出128个数据 import numpy as np import tensorflow as tf data = np.array([[2, 1], [3, 4], [5,…
1. tf.reuse_default_graph() # 对graph结构图进行清除和重置操作 2.tf.summary.FileWriter(path)构造writer实例化,以便进行后续的graph写入 参数说明:path表示路径 3.writer.add_graph(sess.graph) 将当前参数的graph写入到tensorboard中 参数说明:sess.graph当前的网络结构图 4. summ = tf.summary.merge_all() # 将所有的summary都添加…
问题:LSTM的输出值output和state是否是一样的 1. rnn.LSTMCell(num_hidden, reuse=tf.get_variable_scope().reuse)  # 构建单层的LSTM网络 参数说明:num_hidden表示隐藏层的个数,reuse表示LSTM的参数进行复用 2.rnn.DropoutWrapper(cell, output_keep_prob=keep_prob) # 表示对rnn的输出层进行dropout 参数说明:cell表示单层的lstm,o…
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变化后的图片大小,0, 0表示dx和dy, cv2.INTER_LINEAR表示插值的方式为线性插值 2.image.get_shape[1:4].num_elements() 获得最后三个维度的大小之和 参数说明:image表示输入的图片 3. saver.save(sess, path, glob…
1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数说明:pool_h1表示输入数据,4表示使用前后几层进行归一化操作,bias表示偏移量,alpha和beta表示系数 局部响应的公式 针对上述公式,做了一个试验代码: # 自己编写的代码, 对x的[1, 1, 1, 1]进行局部响应归一化操作,最后结果是相同的x = np.array([i for…
1. tf.train.Saver() tf.train.Saver()是一个类,提供了变量.模型(也称图Graph)的保存和恢复模型方法. TensorFlow是通过构造Graph的方式进行深度学习,任何操作(如卷积.池化等)都需要operator,保存和恢复操作也不例外. 在tf.train.Saver()类初始化时,用于保存和恢复的save和restore operator会被加入Graph.所以,下列类初始化操作应在搭建Graph时完成. saver = tf.train.Saver()…
一个tensorflow图由以下几部分组成: 占位符变量(Placeholder)用来改变图的输入. 模型变量(Model)将会被优化,使得模型表现得更好. 模型本质上就是一些数学函数,它根据Placeholder和模型的输入变量来计算一些输出. 一个cost函数度量用来指导变量的优化. 一个优化策略会更新模型的变量.(梯度下降优化器) 四则运算: +-*/ ** 基本运算 tf.add(x,y,name) tf.subtract(x,y,name) tf.multiply(x,y,name)…
上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即测试集和验证集 [2]: 引入 tensorflow 启动InteractiveSession(比session更灵活) [3]: 定义两个初始化w和b的函数,方便后续操作 [4]: 定义卷积和池化函数,这里卷积采用padding,使得 输入输出图像一样大,池化采取2x2,那么就是4格变一格 [5]…
1. tf.reduce_mean(a) : 求平均值 2. tf.truncated_normal([3,2],stddev=0.1) : 从正态分布中输出随机值,标准差为0,1,构造矩阵为3*2的 3. tf.argmax(vector, 1):返回的是vector中的最大值的索引号,如果vector是一个向量,那就返回一个值,如果是一个矩阵,那就返回一个向量,这个向量的每一个维度都是相对应矩阵行的最大值元素的索引号. A = [[1,3,4,5,6]]B = [[1,3,4], [2,4,…
tf.trainable_variables()  返回的是 所有需要训练的变量列表 tf.all_variables() 返回的是 所有变量的列表 v = tf.Variable(0, name='v') v1 = tf.Variable(tf.constant(5, shape=[1], dtype=tf.float32), name='v1') global_step = tf.Variable(6, name='global_step', trainable=False) # 声明不是训…
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, strides表示步长,分别表示为样本数,长,宽,通道数,padding表示补零操作 2. tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  # 对数据进行池化操作 参数说明:x表示输入数据,ksize表示卷…
使用tf.nn.batch_normalization函数实现Batch Normalization操作 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearningai课程 课程笔记 Udacity课程 """ 大多数情况下,您将能够使用高级功能,但有时您可能想要在较低的级别工作.例如,如果您想要实现一个新特性-一些新的内容,那么TensorFlow还没有包括它的高级实现, 比如LSTM中的批处理规范化--那么您可能需要知道一些事情. 这…
Batch Normalization: 使用tf.layers高级函数来构建带有Batch Normalization的神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearningai课程 课程笔记 Udacity课程 在使用tf.layers高级函数来构建神经网络中我们使用了tf.layers包构建了一个不包含有Batch Normalization结构的卷积神经网络模型作为本节模型的对比 本节中将使用tf.layers包实现包含有Batch N…