从极大似然估计的角度理解深度学习中loss函数 为了理解这一概念,首先回顾下最大似然估计的概念: 最大似然估计常用于利用已知的样本结果,反推最有可能导致这一结果产生的参数值,往往模型结果已经确定,用于反推模型中的参数.即在参数空间中选择最有可能导致样本结果发生的参数.因为结果已知,则某一参数使得结果产生的概率最大,则该参数为最优参数. 似然函数:\[ l(\theta) = p(x_1,x_2,...,x_N|\theta) = \prod_{i=1}^{N}{p(x_i|\theta)}\]…
作为中国移动应用运行托管平台(MM应用引擎)的开发部署工具,统一开发环境(UDE)在原HTML5跨平台开发功能基础上优化升级,新增跨平台编译(Android/iOS)和云端托管服务,正式上线2.0版本,为Web和移动应用开发者提供一站式跨平台开发和云端托管服务. UDE技术专区:http://dev.10086.cn/ude/ (注:专区提供应用模板.示例代码和开发手册等开发资源) 完整安装包下载:http://dev.10086.cn/appdown/cmcc_ude/final/CMCC_U…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 关于相似性以及文档特征.词特征有太多种说法.弄得好乱,而且没有一个清晰逻辑与归类,包括一些经典书籍里面也分得概念模糊,所以擅自分一分. ---------------------------------------------- 一.单词的表示方式 1.词向量 词向量是现行较为多的方式,另外一篇博客已经写了四种词向量的表达方式,两两之间也有递进…
这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领域,如军事,进入,公共安全和日常生活.FR自然在CVPR会议中也占据了十分长的时间.早在1990年代,随着特征脸的提出[157],FR就成为了一个比较热门的研究领域.过去基于特征进行FR的里程碑方法在图1中有所展示 如图1所示,其中介绍了4个主流技术的发展过程: holistic 方法:通过某种分布假设去直接…
Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a target task where labeled data is unavailable, domain adaptation can transfer a learner from a different source domain. In this paper, we propose a n…
MAML-Tracker: 目标跟踪分析:CVPR 2020(Oral) Tracking by Instance Detection: A Meta-Learning Approach 论文链接:https://arxiv.org/abs/2004.00830 摘要 把跟踪问题看作一类特殊的目标检测问题,称之为实例检测.通过适当的初始化,通过从单个图像中学习新实例,可以将检测快速转换为跟踪.发现模型不可知元学习(MAML)提供了一种策略来初始化满足需求的检测.提出一个原则性的三步方法来建立一个…
DMCP 2020-CVPR-DMCP Differentiable Markov Channel Pruning for Neural Networks Shaopeng Guo(sensetime 商汤) GitHub: 64 stars https://github.com/zx55/dmcp Introduction propose a novel differentiable channel pruning method named Differentiable Markov Chan…
CVPR 2020目标跟踪多篇开源论文(上) 1. SiamBAN:面向目标跟踪的Siamese Box自适应网络 作者团队:华侨大学&中科院&哈工大&鹏城实验室&厦门大学等 论文链接:https://arxiv.org/abs/2003.06761 代码链接:https://github.com/hqucv/siamban 注:表现SOTA!速度高达40 FPS!性能优于DiMP.SiamRPN++和ATOM等网络. 大多数现有的跟踪器通常依赖于多尺度搜索方案或预定义的a…
paper url: https://arxiv.org/pdf/1612.02295 year:2017 Introduction 交叉熵损失与softmax一起使用可以说是CNN中最常用的监督组件之一. 尽管该组件简单而且性能出色, 但是它只要求特征的可分性, 没有明确鼓励网络学习到的特征具有类内方差小, 类间方差大的特性. 该文中,作者提出了一个广义的 large margin softmax loss(L-Softmax),是large margin系列的开篇之作. 它明确地鼓励了学习特…
本文来自<A Discriminative Feature Learning Approach for Deep Face Recognition>,时间线为2016年.采用的loss是Center loss. 0 引言 通常使用CNN进行特征学习和标签预测的架构,都是将输入数据映射到深度特征(最后一层隐藏层的输出),然后到预测的标签,如图1. 在通用目标,场景和动作识别中,预测的样本归属的类别也处在训练集中,这被称为"闭集识别".因此,预测的标签能表示模型的性能,且sof…