完整opencv(emgucv)人脸.检测.采集.识别.匹配.对比 //成对几何直方图匹配               public static string MatchHist()                {          string haarXmlPath = @"haarcascade_frontalface_alt_tree.xml";          HaarCascade haar = new HaarCascade(haarXmlPath);       …
前言 使用opencv自带的分类器效果并不是很好,由此想要训练自己的分类器,正好opencv有自带的工具进行训练.本文就对此进行展开. 步骤 1.查找工具文件: 2.准备样本数据: 3.训练分类器: 具体操作 注意,本文是在windows系统实现的,当然也可以在linux系统进行. 1.查找工具文件: opencv中的自带的分类器训练工具在开源库中以应用程序的类型呈现的,具体目录如下. .\opencv2410\build\x64\vc12\bin 可以在该目录下查找到相关的工具文件,有open…
一.概述 案例:使用opencv级联分类器CascadeClassifier+其提供的特征数据实现人脸检测,检测到人脸后使用红框画出来. API介绍:detectMultiScale( InputArray image, CV_OUT std::vector<Rect>& objects,double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize =…
前段时间使用OpenCV的库函数实现了人脸检测和人脸识别,笔者的实验环境为VS2010+OpenCV2.4.4,opencv的环境配置网上有很多,不再赘述.检测的代码网上很多,记不清楚从哪儿copy的了,识别的代码是从OpenCV官网上找到的:http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_api.html 需要注意的是,opencv的FaceRecogizer目前有三个类实现了它,特征脸和fisherface方法…
简介   OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows.Android和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法.  OpenCV的官方网址为:https://opencv.org/, 其Github网址为:https://github.com/opencv .  本文将会介绍OpenCV在…
上几篇给大家讲了OpenCV的图片人脸检测,而本文给大家带来的是比OpenCV更加精准的图片人脸检测Dlib库. 点击查看往期: <图片人脸检测——OpenCV版(二)> <视频人脸检测——OpenCV版(三)> dlib与OpenCV对比 识别精准度:Dlib >= OpenCV Dlib更多的人脸识别模型,可以检测脸部68甚至更多的特征点 效果展示 人脸的68个特征点 安装dlib 下载地址:https://pypi.org/simple/dlib/ 选择适合你的版本,本…
1. 引言 在某些场景下,我们不仅需要进行实时人脸检测追踪,还要进行再加工:这里进行摄像头实时人脸检测,并对于实时检测的人脸进行初步提取: 单个/多个人脸检测,并依次在摄像头窗口,实时平铺显示检测到的人脸: 图 1 动态实时检测效果图 检测到的人脸矩形图像,会依次 平铺显示 在摄像头的左上方: 当多个人脸时候,也能够依次铺开显示: 左上角窗口的大小会根据捕获到的人脸大小实时变化: 图 2 单个/多个人脸情况下摄像头识别显示结果 2. 代码实现 主要分为三个部分: 摄像头调用,利用 OpenCv…
1.Easily Create High Quality Object Detectors with Deep Learning 2016/10/11 http://blog.dlib.net/2016/10/easily-create-high-quality-object.html dlib中的MMOD实现使用HOG特征提取,然后使用单个线性过滤器.这意味着它无法学习检测出具有复杂姿势变化的物体.HOG:方向梯度直方图(Histogram of oriented gradient)是在计算机…
本节将介绍 Haar 级联分类器,通过对比分析相邻图像区域来判断给定图像或子图像与已知对象是否匹配. 本章将考虑如何将多个  Haar 级联分类器构成一个层次结构,即一个分类器能识别整体区域(如人脸),而其他的分类器可识别小的区域(如鼻子.眼睛和嘴). 1 Haar 级联的概念 图像会因灯光.视角.视距.摄像头抖动以及数字噪声的变化而使得细节变得不稳定.所以提取图像的细节对产生稳定分类结果和跟踪结果很有作用.这些提取的结果被称为特征. 专业的表述为:从图像数据中提取特征.虽然任意像素都可能影响多…
参考自https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/ 在原有基础上有一部分的修改(image改为可选参数,若不填则为拍照后选取),如果有想深入学习的,可以去关注这位'吴克'先生的文章. 本文不涉及关于人脸检测的训练部分(虽然之后随着学习深入我会再发相关的随笔),只是简单的用轮子. 今天我们来使用dlib和opencv进行人脸的检测标注 首先安装opencv和dlib的方法 pip inst…
年会签到,拍自己的大头照,有的人可能会拍成横向的,需要旋转,用人脸检测并修正它(图片). 1. 无脑检测步骤为: 1. opencv 读取图片,灰度转换 2. 使用CascadeClassifier()通过训练数据训练分类器 3. detectMultiScale()检测人脸 训练数据集下最基本的人脸haarcascade_frontalface_default.xml 2. 开始检测 1) 斜脸检测失败 用了一张逃避可耻但有用剧照,不知是gakki脸斜还是不清晰的缘故,face_cascade…
人脸检测方法有许多,比如opencv自带的人脸Haar特征分类器和dlib人脸检测方法等. 对于opencv的人脸检测方法,优点是简单,快速:存在的问题是人脸检测效果不好.正面/垂直/光线较好的人脸,该方法可以检测出来,而侧面/歪斜/光线不好的人脸,无法检测.因此,该方法不适合现场应用.而对于dlib人脸检测方法采用64个特征点检测,效果会好于opencv的方法识别率会更高,本文会分别采用这几种方法来实现人脸识别.那个算法更好,跑跑代码就知道. 实时图像捕获 首先在进行人脸识别之前需要先来学点O…
本篇介绍图像处理与模式识别中最热门的一个领域——人脸检测(人脸识别).人脸检测可以说是学术界的宠儿,在不少EI,SCI高级别论文都能看到它的身影.甚至很多高校学生的毕业设计都会涉及到人脸检测.当然人脸检测的巨大实用价值也让很多公司纷纷关注,很多公司都拥有这方面的专利或是开发商业产品出售. 在OpenCV中,人脸检测也是其热门应用之一.在OpenCV的特征检测专题就详细介绍了人脸检测的原理——通过Haar特征来识别是否为人脸.Haar特征检测原理与Haar特征分类器的训练放到下一篇<[OpenCV…
读出某一个文件夹下“jpg”后缀的全部图片后,用的OpenCV自带的人脸检测检测图片中的人脸,调整图片的大小写成一个avi视频. 主要是要记录一下CvVideoWriter的用法和如何从文件夹中读取某一后缀的全部文件. 代码: #include "stdafx.h" #include <opencv2\opencv.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/i…
记录cvSmooth函数的用法和 OpenCV自带的人脸检测. (1)cvSmooth函数 void cvSmooth( const CvArr* src, CvArr* dst,int smoothtype=CV_GAUSSIAN,int param1, int param2, double param3, double param4 ); src:输入图像. dst:输出图像. smoothtype平滑方法: CV_BLUR_NO_SCALE(简单不带尺度变换的模糊),对每个象素的 para…
导读 OpenCV 是一个开源的跨平台计算机视觉库, 采C++语言编写,实现了图像处理和计算机视觉方面的很多通用算法,同时也提供对Python,Java,Android等的支持,这里利用Android下的接口,实现一个简单的人脸检测: 首先需要说清楚这里是人脸检测,不是人脸识别,网上很多资料说实现人脸识别,最后一看明明是人脸检测. 人脸检测:是找出人脸,并标记出人脸. 人脸识别:检测出人脸,并能够通过学习,给出人脸信息,比如,给定一个人脸A,通过学习,在之后的众多检测中能够找出人脸A,这才是人脸…
开发配置 OpenCV的例程中已经带有了人脸检测的例程,位置在:OpenCV\samples\facedetect.cpp文件,OpenCV的安装与这个例子的测试可以参考我之前的博文Linux 下编译安装OpenCV. 网上能够找到关于OpenCV人脸检测的例子也比较多,大多也都是基于这个例程来更改,只是多数使用的是OpenCV 1.0的版本,而OpenCV2.0以后由于模块结构的更改,很多人并没有将例程运行起来.如果是新版的OpenCV跑旧的例程,编译运行出错的话,需要确保: #include…
摘要:实现图像中人脸检测,和人眼定位.输出检测标记图像和定位坐标. 工具:vs2015 opencv3  C++ 资源:haarcascade_frontalface_alt2.xml;haarcascade_eye_tree_eyeglasses.xml 链接:https://pan.baidu.com/s/1uk8P1TF7XXCoMMd0sNDGVg 提取码:az01 实现结果: 实现过程: Detect.h #pragma once #include <opencv2/opencv.hp…
#!/usr/bin/python3 # 百度人脸对比 & 人脸检测api-v3 import sys, tkinter.messagebox, ast import ssl, json,requests import pdb import base64 from urllib import request, parse from aip import AipFace ssl._create_default_https_context = ssl._create_unverified_conte…
我这里用的是已经训练好的haar级联分类器. 眼睛检测 haarcascade_eye_tree_eyeglasses.xml 人脸检测 haarcascade_frontalface_alt2.xml检测思路:先把图片转为灰度,接着将图片直方均匀化,在上面处理后的图片矩阵中检测脸的区域,然后把脸这一块圈出来去检测眼睛.检测函数代码如下: #include <opencv/cv.h> #include <opencv/highgui.h> #include <opencv2/…
最近学习人脸识别相关的东西,在MFC下使用OpenCV做了一个简单的应用.训练需要较多的数据,windows应用程序终究还是不方便,于是想着做成CS模式:检测识别都放在服务器端,视频获取和显示都放在网页端. 在网上找了一些资料,实现了简单的人脸检测.人脸识别只要在这个框架上加点代码就行.主要参考了下面这篇文章: http://www.open-open.com/home/space-361-do-blog-id-8960.html jetty版本:jetty-9.2.17.v20160517 j…
1.在windows下编写人脸检测.识别系统.目前已完成:可利用摄像头提取图像,并将人脸检测出来,未进行识别. 2.在linux下进行编译在windows环境下已经能运行的代码. 为此进行了linux系统下OpenCv的安装. 在linux中安装OpenCv遇到了很多问题,已经解决,但是花费了不少时间.目前:可以在linux下编译OpenCv项目,但是运行生成的程序时出现问题.初步认定为采用了虚拟机而导致运行内存不足,程序直接崩溃,将继续解决这个问题. 花费较多时间安装OpenCv是有必要的,为…
之前运行haar特征的adaboost算法人脸检测一直出错,加上今天的HOG&SVM行人检测程序,一直报错. 今天总算发现自己犯了多么白痴的错误——是因为外部依赖项lib文件没有添加完整,想一头囊死啊 做程序一定要心如止水!!! 仔细查找!!! 1.人脸识别程序: #include "cv.h" #include "highgui.h" #include <stdio.h> #include <stdlib.h> #include &…
基于OpenCv从视频文件到摄像头的人脸检测 在OpenCv中读取视频文件和读取摄像头的的视频流然后在放在一个窗口中显示结果其实是类似的一个实现过程. 先创建一个指向CvCapture结构的指针 CvCapture *capture; 再用两个函数就可以分别获取到视频文件或者摄像头的一些状态信息,然后把这些信息放进去之前指向的结构体 视频文件 capture = cvCreateCameraCapture(0); 打开摄像头 capture = cvCreateFileCapture(argv[…
这两天在初学目标检测的算法及步骤,其中人脸检测作为最经典的算法,于是进行了重点研究.该算法最重要的是建立人脸检测分类器,因此我用了一天的时间来学习分类器的训练.这方面的资料很多,但是能按照一个资料运行出结果的确实没有找到,因此我总结了自己的训练经验. 目标检测分为三个步骤: 1.样本的创建 2.训练分类器 3.利用训练的分类器进行目标检测 第一步:样本的创建 ◆     样本分两种: 正样本与负样本(也有人翻译成:正例样本和反例样本),其中正样本是指待检目标样本(例如人脸,汽车,鼻子等),负样本…
前段时间看的OpenCV,其实有很多的例子程序,参考代码值得我们学习,对图像特征提取三大法宝:HOG特征,LBP特征,Haar特征有一定了解后. 对本文中的例子程序刚开始没有调通,今晚上调通了,试了试效果还可以,还需要深入理解.值得大家动手试试,还是很有成就感的,虽然是现成的例子....... 环境:OpenCV3.1+VS2013+WIN10 复制代码/*! * \file Capture.cpp * * \author ranjiewen * \date 十一月 2016 * * http:…
视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇<图片人脸检测——OpenCV版(二)> 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人脸的位置,把处理的图片逐帧绘制给用户,用户看到的效果就是视频的人脸检测. 效果预览: 实现步骤 使用OpenCV调用摄像头并展示 获取摄像头: cap = cv2.VideoCapture(0) 参数0表示,获取第一个摄像头. 显示摄像头 逐帧显示,代码如下: while (1): ret, img = ca…
必备知识 Haar-like opencv api 读取图片 灰度转换 画图 显示图像 获取人脸识别训练数据 探测人脸 处理人脸探测的结果 实例 图片素材 人脸检测代码 人脸检测结果 总结 下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like Haar-like百科释义.通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征…
我们来看下效果 原图: 效果: 原理其实很简单: 采用一张圣诞帽的png图像作为素材, 利用png图像背景是透明的,贴在背景图片上就是戴帽子的效果了. 人脸检测的目的主要是为了确定贴帽子的位置,类似ps中自由变换的功能,检测到人脸中间的位置,resize圣诞帽子和人脸大小匹配,确定位置,贴上去,ok! 代码:非常简洁,根据参考博客给出的代码,由OpenCV自带的人脸检测代码经过简单修改即可. // getheader.cpp : 定义控制台应用程序的入口点. // #include "stdaf…
1 概述 完成 Android 相机预览功能以后,在此基础上我使用 dlib 与 opencv 库做了一个关于人脸检测的 demo.该 demo 在相机预览过程中对人脸进行实时检测,并将检测到的人脸用矩形框描绘出来.具体实现原理如下: 采用双层 View,底层的 TextureView 用于预览,程序从 TextureView 中获取预览帧数据,然后调用 dlib 库对帧数据进行处理,最后将检测结果绘制在顶层的 SurfaceView 中. 2 项目配置 由于项目中用到了 dlib 与 open…