目录视图 摘要视图 订阅 [置顶] [卷积神经网络-进化史]从LeNet到AlexNet 标签: cnn 卷积神经网络 深度学习 2016年05月17日 23:20:3046038人阅读 评论(4) 收藏 举报  分类: [机器学习&深度学习](15)  版权声明:如需转载,请附上本文链接.作者主页:http://blog.csdn.net/cyh_24 https://blog.csdn.net/cyh24/article/details/51440344   目录(?)[+]   [卷积神经…
[卷积神经网络-进化史]从LeNet到AlexNet 本博客是[卷积神经网络-进化史]的第一部分<从LeNet到AlexNet> 如需转载,请附上本文链接:http://blog.csdn.net/cyh_24/article/details/51440344 更多相关博客请猛戳:http://blog.csdn.net/cyh_24 本系列博客是对刘昕博士的<CNN的近期进展与实用技巧>的一个扩充性资料. 主要讨论CNN的发展,并且引用刘昕博士的思路,对CNN的发展作一个更加详细…
一 实例探索 上一节我们介绍了卷积神经网络的基本构建,比如卷积层.池化层以及全连接层这些组件.事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络.最直观的方式之一就是去看一些案例,就像很多人通过看别人的代码来学习编程一样,通过研究别人构建有效组件的案例是个不错的办法.实际上在计算机视觉任务中表现良好的神经网络框架往往也适用于其它任务,也许你的任务也不例外.也就是说,如果有人已经训练或者计算出擅长识别猫.狗.人的神经网络或者神经网络框架,而你的计算…
一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32*32 卷积层:2个 降采样层(池化层):2个 全连接层:2个 输出层:1个.10个类别(数字0-9的概率) LeNet-5网络是针对灰度图进行训练的,输入图像大小为32*32*1,不包含输入层的情况下共有7层,每层都包含可训练参数(连接权重).注:每个层有多个Feature Map,每个Featu…
一 1x1卷积 在架构内容设计方面,其中一个比较有帮助的想法是使用 1×1 卷积.也许你会好奇,1×1 的卷积能做什么呢?不就是乘以数字么?听上去挺好笑的,结果并非如此,我们来具体看看. 过滤器为 1×1 ,这里是数字 2,输入一张 6×6×1 的图片,然后对它做卷积,过滤器大小为 1×1 ,结果相当于把这个图片乘以数字 2,所以前三个单元格分别是 2. 4. 6 等等.用 1×1 的过滤器进行卷积,似乎用处不大,只是对输入矩阵乘以某个数字.但这仅仅是对于6×6×1的一个通道图片来说, 1×1…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需.如果读者是初接触CNN,建议可以先看一看"Deep Learning(深度学习)学习笔记整理系列"中关于CNN的介绍[1],是介绍我们常说的Lenet为例,相信会对初学者有帮助. Le…
AlexNet 为卷积神经网络和深度学习正名,以绝对优势拿下 ILSVRC 2012 年冠军,引起了学术界的极大关注,掀起了深度学习研究的热潮. AlexNet 在 ILSVRC 数据集上达到 16.4% 的错误率(需要设定 batch_size=1) models/alexnet_benchmark.py at master · tensorflow/models · GitHub,为一个 AlexNet 的测试基准程序. 0. 模型拓扑 在 main 函数中,不是使用的 ImageNet 中…
上代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #每个批次的大小 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size #参数概要 def vari…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("F:\TensorflowProject\MNIST_data",one_hot=True) #每个批次大小 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples //batch_…