PS. 看了大神的题解,发现确实可以用m个未知数的高斯消元做.因为确定了第一行的情况,之后所有行的情况都可以根据第一行推. 这样复杂度直接变成O(m*m*m) 知道了是高斯消元后,其实只要稍加处理,就可以解决带模的情况. 1 是在进行矩阵行变化的时候,取模. 2 最后的除法用逆元.(因为a[i][i]必定非0 且小于模数) 然后对于无穷多解的情况,只需要将那些列全为0的未知数定义一个固定值.(这里设的是0)其余操作不变. #include <iostream> #include <cst…
题目链接 高斯消元详解 /* $Description$ 在n维空间中给定n+1个点,求一个点使得这个点到所有点的距离都为R(R不给出).点的任一坐标|xi|<=1e17. $Solution$ 根据题意可以列出n+1个二元n次方程,相邻的方程相减可以把二次项和R全部约掉,得到n个一元n次方程. 但需要注意这题数据量较大,最大的可能解范围为1e17,如果利用大数(高精...) 乘法的复杂度会很高 可以采用同余的方法,所有运算需要模一个足够大的素数(>1e17),可以用Miller_Rabin生…
题目链接 \(Description\) 求\(A_0,A_1,A_2,\cdots,A_{n-1}\),满足 \[A_0*1^0+A_1*1^1+\ldots+A_{n-1}*1^{n-1}\equiv B[1](mod\ p)\] \[A_0*2^0+A_1*2^1+\ldots+A_{n-1}*2^{n-1}\equiv B[2](mod\ p)\] \[\ldots\ldots\ldots\] \[A_0*n^0+A_1*n^1+\ldots+A_{n-1}*n^{n-1}\equiv…
模板的高斯消元.... /** @Date : 2017-09-26 18:05:03 * @FileName: HDU 2827 高斯消元.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : $Id$ */ #include <bits/stdc++.h> #define LL long long #define PII p…
http://acm.hdu.edu.cn/showproblem.php?pid=5755 题意:一个N*M的矩阵,改变一个格子,本身+2,四周+1.同时mod 3;问操作多少次,矩阵变为全0.输出次数和具体位置 由于影响是相互的,所以增广矩阵的系数a[t][t+1] 或者是 a[t+1][t]均可:只需注意往结果中添加位置时,x[i]表示要操作x[i]次,所以位置要重复添加x[i]次: 高斯消元时间复杂度为O(N3M3); #pragma comment(linker, "/STACK:10…
http://acm.hdu.edu.cn/showproblem.php?pid=3359 题目的意思是,由矩阵A生成矩阵B的方法是: 以a[i][j]为中心的,哈曼顿距离不大于dis的数字的总和 / 个数,就是矩阵B的b[i][j] 现在给出B,要求A 那么我们设A矩阵为a[1][1], a[1][2], a[1][3]..... 那么对于每一个b[i][j]我们有b[i][j] = (a[1][1] + a[1][2] + ... + ) / cnt 所以这样可以建议一条方程,然后guas…
http://acm.hdu.edu.cn/showproblem.php?pid=3915 这道题目是和博弈论挂钩的高斯消元.本题涉及的博弈是nim博弈,结论是:当先手处于奇异局势时(几堆石子数相互异或为0),其必败. 思路在这里,最后由于自由变元能取1.0两种状态,所以,最终答案是2^k,k表示自由变元的个数. #include <cstdio> #include <cstdlib> #include <cmath> #include <cstring>…
题意:  一个人在一条线段来回走(遇到线段端点就转变方向),现在他从起点出发,并有一个初始方向, 每次都可以走1, 2, 3 ..... m步,都有对应着一个概率.问你他走到终点的概率 思路: 方向问题很是问题,我们可以把线段改造成环,具体我们可以把除端点以外的点作为另一个半圆 和原来的线段拼成一个环, 方向就单一了,用dp[i]表示在i点的时候到达终点的期望步数,则dp[i]=dp[(i+1)%N]*p1+E[(i+2)%N]*p2+…E[(i+m)%N]*pm+1. 这里N为变成环以后的点数…
题面 高斯消元模板题. 这里直接讲述一下高斯消元的算法流程: 枚举每一列 \(c\): 找到第 \(c\) 列绝对值最大的一行: 将这一行换到最上面: 将该行的第一个数变成 \(1\): 将下面所有行的第 \(c\) 列变成 \(0\). 处理完后需要从最后一行往回迭代,求出每一个未知数的值. #include <bits/stdc++.h> using namespace std; const double eps = 1e-6; //浮点数误差 int n, m; double a[103…
题目大意: 一个人在n长的路径上走到底再往回,走i步停下来的概率为Pi , 求从起点开始到自己所希望的终点所走步数的数学期望 因为每个位置都跟后m个位置的数学期望有关 E[i] = sigma((E[i+j]+j)*P[j]) 我们需要将模型转化一下,本来路径为012345这样,因为来回走,我们多定义n-2个点就是 0123454321然后利用取模就可以不断找到下一组相关的m个点 列出多元方程组,利用高斯消元解决问题 #include <cstdio> #include <cstring…