二分类:SVMs,logistic regression,decision trees,random forests,gradient-boosted trees,naive Bayes 多分类:             logistic regression,decision trees,random forests,                                        naive Bayes 归回:      linear least regression,   …
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是依据现有深度学习教程<UFLDL教程>中的算法.在SparkMLlib中的实现.详细Spark MLlib Deep Learning(深度学习)文件夹结构: 第一章Neural Net(NN) 1.源代码 2.源代码解析 3.实例 第…
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是依据现有深度学习教程<UFLDL教程>中的算法.在SparkMLlib中的实现.详细Spark MLlib Deep Learning(深度学习)文件夹结构: 第一章Neural Net(NN) .源代码 .源代码解析 .实例 第二章Deep Belie…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”. l“机器学习是对能通过经验自动改进的计算机算法的研究”. l“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准.” 一种经常引用的英文定义是:A computer program is said t…
本章导读 机器学习(machine learning, ML)是一门涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多领域的交叉学科.ML专注于研究计算机模拟或实现人类的学习行为,以获取新知识.新技能,并重组已学习的知识结构使之不断改善自身. MLlib是Spark提供的可扩展的机器学习库.MLlib已经集成了大量机器学习的算法,由于MLlib涉及的算法众多,笔者只对部分算法进行了分析,其余算法只是简单列出公式,读者如果想要对公式进行推理,需要自己寻找有关概率论.数理统计.数理分析等方面的专…
Spark MLlib架构解析 MLlib的底层基础解析 MLlib的算法库分析 分类算法 回归算法 聚类算法 协同过滤 MLlib的实用程序分析 从架构图可以看出MLlib主要包含三个部分: 底层基础:包括Spark的运行库.矩阵库和向量库: 算法库:包含广义线性模型.推荐系统.聚类.决策树和评估的算法: 实用程序:包括测试数据的生成.外部数据的读入等功能. MLlib的底层基础解析 底层基础部分主要包括向量接口和矩阵接口,这两种接口都会使用Scala语言基于Netlib和BLAS/LAPAC…
话不多说.直接上代码咯.欢迎交流. /** * Created by whuscalaman on 1/7/16. */import org.apache.spark.{SparkConf, SparkContext}import org.apache.spark.mllib.classification.SVMWithSGDimport org.apache.spark.mllib.linalg.Vectorsimport org.apache.spark.mllib.regression.L…
Mllib SVM实例 1.数据 数据格式为:标签, 特征1 特征2 特征3…… 0 128:51 129:159 130:253 131:159 132:50 155:48 156:238 157:252 158:252 159:252 160:237 182:54 183:227 184:253 185:252 186:239 187:233 188:252 189:57 190:6 208:10 209:60 210:224 211:252 212:253 213:252 214:202…
1.自动文本分类是对大量的非结构化的文字信息(文本文档.网页等)按照给定的分类体系,根据文字信息内容分到指定的类别中去,是一种有指导的学习过程. 分类过程采用基于统计的方法和向量空间模型可以对常见的文本网页信息进行分类,分类的准确率可以达到85%以上.分类速度50篇/秒. 2.要想分类必须先分词,进行文本分词的文章链接常见的四种文本自动分词详解及IK Analyze的代码实现 3.废话不多说直接贴代码,原理链接https://www.cnblogs.com/pinard/p/6069267.ht…
PMML是一种通用的配置文件,只要遵循标准的配置文件,就可以在Spark中训练机器学习模型,然后再web接口端去使用.目前应用最广的就是基于Jpmml来加载模型在javaweb中应用,这样就可以实现跨平台的机器学习应用了. 训练模型 首先在spark MLlib中使用mllib包下的逻辑回归训练模型: import org.apache.spark.mllib.classification.{LogisticRegressionModel, LogisticRegressionWithLBFGS…