题解 hdu4624 Endless Spin】的更多相关文章

题目链接 题目大意: 有长度为\(n\)的区间,每次随机选择一段(左右端点都是整数)染黑,问期望多少次全部染黑. \(n\leq 50\) 设\(n\)个随机变量\(t_1,...,t_n\).\(t_i\)表示第一次覆盖到\(i\)的时间的期望.则我们要求的是\(\displaystyle\max_{i=1}^{n}(E(t_i))\). 考虑minmax容斥: \[\max_{x\in s}(E(x))=\sum_{t\subseteq s}(-1)^{|t|+1}\min_{x\in t}…
Endless Spin 给你一段长度为[1..n]的白色区间,每次随机的取一个子区间将这个区间涂黑,问整个区间被涂黑时需要的期望次数. n<=50 题解 显然是min-max容斥,但是n的范围太大,不能暴力枚举. 设计DP,令f(i,j,k)表示前i个球中必须选第i个球,有j种区间可以选择并且选择他们不会涂黑决定要涂黑的球,决定要涂黑的球的个数是奇数还是偶数的方案数. 转移就考虑第i个球必须选时,上一个决定要选的球是哪个就行了. 注意这题需要实现一个高精度. CO int N=51; LL d…
题目分析: 题目是求$E(MAX_{i=1}^n(ai))$, 它等于$E(\sum_{s \subset S}{(-1)^{|s|-1}*min(s))} = \sum_{s \subset S}{(-1)^{|s|-1}*E(min(s))}$. 那么设计期望DP,令$f[i][j][k]$表示前i个球,可选的区间为j个,球的个数是奇数还是偶数.然后就是要写一个高精度,不一定要真的写,可以yy出一种简便方法. 代码: #include<bits/stdc++.h> using namesp…
2013年多校的题目,那个时候不太懂怎么做,最近重新拾起来,看了一下出题人当初的解题报告,再结合一下各种情况的理解,终于知道整个大致的做法,这里具体写一下做法. 题意:给你一段长度为[1..n]的白色区间,每次随机的取一个子区间将这个区间涂黑,问整个区间被涂黑时需要的期望次数. 1. 首先要做的是一个题目的转化.如果我定义pi为 恰好i次将区间涂黑的概率,那么显然期望 E= 0*p0+1*p1+2*p2+... 换一种角度看这个公式,其实这个公式可以这么写 E = p1 + p2 + p3 +…
clj的题.图是假的别看 得先做这个[HAOI2015]按位或 本题如果还用[HAOI2015]按位或 的方法,2^50拜拜 但是思路一定是这样的:min-max容斥,考虑每个S的第一触及次数期望 这个题和[HAOI2015]按位或 一个不同之处是,每个区间的选择等概率随机! 这启发我们可以对许多状态一起统计! 发现,第一次触碰到S的概率和全是0的区间个数有关,符号和1的个数有关,为了方便转移还要记录最后一个1出现的位置 f[i][j][0/1]表示最后一个1的位置在i,全是0的区间个数为j,1…
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \choose j} g_j \] 同时, 若 \[g_i=\sum_{j=1}^i (-1)^j {i \choose j} f_j\] , 则有 \[f_i=\sum_{j=1}^i (-1)^j {i \choose j} g_j\] 通过反演原理和组合数的性质不难证明. 0/1? todo Sti…
AGC036F Square Constriants 一定有 \(l_i<p_i\le r_i\). 考虑朴素容斥,枚举每个数是 \(\le l_i\) 还是 \(\le r_i\).对于 \(p_i\le x_i\),方案数是:把 \(x\) 排序后 \(\prod(x_i+1-i)\)(下标从 \(0\) 开始). 太慢了. 把 \(l_0\) 到 \(l_{n-1}\),\(r_0\) 到 \(r_{2n-1}\) 一起排序.(\(l_n\) 到 \(l_{2n-1}\) 不用管,他们非正…
自闭集训 Day1 组合计数 T1 \(n\le 10\):直接暴力枚举. \(n\le 32\):meet in the middle,如果左边选了\(x\),右边选了\(y\)(且\(x+y\le B\)),那么对答案的贡献就是 \[ {B-x-y+n-1\choose n-1} \] 根据范德蒙德恒等式 \[ {a+b\choose n} =\sum_{i=0}^n {a\choose i}{b\choose n-i} \] 所以上面可以拆开成 \[ \sum_{i=0}^{n-1} {C…
题面:https://www.cnblogs.com/Juve/articles/11558523.html A:Emotional Flutter 如果起点确定,那么我们后面走的点都是固定的,及mod k余数相同 如果路径中有一个%k在黑块里,那么这个起点是不可行的 然后我们可以对于所有黑块,看它限制了哪些余数 最后我们要判断的就是有没有一个长度为s的连续区间,使得它没有被限制 #include<iostream> #include<cstdio> #include<alg…
题目描述 有一个无向图G,每个点有个权值,每条边有一个颜色.这个无向图满足以下两个条件: 对于任意节点连出去的边中,相同颜色的边不超过两条. 图中不存在同色的环,同色的环指相同颜色的边构成的环. 在这个图上,你要支持以下三种操作: 修改一个节点的权值. 修改一条边的颜色. 查询由颜色c的边构成的图中,所有可能在节点u到节点v之间的简单路径上的节点的权值的最大值. 输入输出格式 输入格式: 输入文件network.in的第一行包含四个正整数N, M, C, K,其中N为节点个数,M为边数,C为边的…