YOLO V1、V2、V3算法 精要解说】的更多相关文章

前言 之前无论是传统目标检测,还是RCNN,亦或是SPP NET,Faste Rcnn,Faster Rcnn,都是二阶段目标检测方法,即分为“定位目标区域”与“检测目标”两步,而YOLO V1,V2,V3都是一阶段的目标检测. 从R-CNN到FasterR-CNN网络的发展中,都是基于proposal+分类的方式来进行目标检测的,检测精度比较高,但是检测速度不行,YOLO提供了一种更加直接的思路: 直接在输出层回归boundingbox的位置和boundingbox所属类别的置信度,相比于R-…
V1,V2已经不被推荐使用,谷歌强烈推荐使用V3. 本人在选择时着实纠结了良久,现在总结如下: 对于V1,现在已经申请不到API KEY了,所以不要使用这个版本.这个是网址:https://developers.google.com/maps/documentation/android/v1/maps-api-signup: 对于V2,要求ANDROID SDK版本3.0以上好像,所以如果你的目标手机的版本是<3的话,V2也不适合:这个版本还是需要密钥的: 对于V3,符合以上两种情况的,就用V3…
前段时间看了YOLO的论文,打算用YOLO模型做一个迁移学习,看看能不能用于项目中去.但在实践过程中感觉到对于YOLO的一些细节和技巧还是没有很好的理解,现学习其他人的博客总结(所有参考连接都附于最后一部分“参考资料”),加入自己的理解,整理此学习笔记. 概念补充:mAP:mAP是目标检测算法中衡量算法精确度的一个指标,其涉及到查准率(Precision)和查全率(Recall).对于目标检测任务,对于每一个目标可以计算出其查准率和查全率,多次实验进行统计,可以得到每个类有一条P-R曲线,曲线下…
论文地址 Inception V1 :Going Deeper with Convolutions Inception-v2 :Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Inception-v3 :Rethinking the Inception Architecture for Computer Vision Inception-v4 :Inception-Res…
from:https://blog.csdn.net/qq_14845119/article/details/73648100 Inception v1的网络,主要提出了Inceptionmodule结构(1*1,3*3,5*5的conv和3*3的pooling组合在一起),最大的亮点就是从NIN(Network in Network)中引入了1*1 conv,结构如下图所示,代表作GoogleNet 假设previous layer的大小为28*28*192,则, a的weights大小,1*…
Bash游戏V1 有一堆石子共同拥有N个. A B两个人轮流拿.A先拿.每次最少拿1颗.最多拿K颗.拿到最后1颗石子的人获胜.如果A B都很聪明,拿石子的过程中不会出现失误.给出N和K,问最后谁能赢得比赛. 比如N = 3.K = 2.不管A怎样拿,B都能够拿到最后1颗石子. Input 第1行:一个数T.表示后面用作输入測试的数的数量.(1 <= T <= 10000) 第2 - T + 1行:每行2个数N,K.中间用空格分隔.(1 <= N,K <= 10^9) Output…
前言 \(HE\)沾\(BJ\)的光成功滚回家里了...这堆最大子段和的题抠了半天,然而各位\(dalao\)们都已经去做概率了...先%为敬. 引流之主:老姚的博客 最大M子段和 V1 思路 最简单的ver.数据范围在5000以内,可以考虑暴力一点的做法\(O(n^3)\),定义\(dp\)状态\(dp[i][j]\),递推式子: \[dp[i][j]=max\{dp[i-1][j],dp[k][j-1]\}+a[i]\ (j-1\le k<i) \] 其中\(i\)表示序列中前\(i\)个元…
1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 输入 1个数N(N <= 10^9) 输出 公约数之和 输入样例 6 输出样例 15 题解 \[ \sum_{i=1}^n\gcd(i,n)=\sum_{d|n}d\varphi(n) \] 暴力搞就行了. 1188 最大公约数之和 V2 给出一个数N,输出小于等于N的所有数,两两之间的最大公约数之和. 相当于计…
本文有修改,如有疑问,请移步原文. 原文链接:  YOLO v1之总结篇(linux+windows) 此外:  YOLO-V2总结篇   Yolo9000的改进还是非常大的 由于原版的官方YOLOv1是只支持linux 和mac的,如果要自己修改,可能需要走好对哦的坑,同时还得具备一定的技术水平,幸好有革命斗士为我们走出了这一步, 可以参考下面2个YOLO-windows, https://github.com/frischzenger/yolo-windows https://github.…
RCNN -> SPPNet -> Fast-RCNN -> Faster-RCNN -> FPN YOLO v1-v3 Reference RCNN: Rich feature hierarchies for accurate object detection and semantic segmentation SPPNet: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition…