what has been done: This paper proposed a novel Deep Supervised Hashing method to learn a compact similarity-presevering binary code for the huge body of image data. Data sets:  CIFAR-10: 60,000 32*32 belonging to 10 mutually exclusively categories(6…
Learning while Reading 不限于具体的书,只限于知识的宽度 这个系列集合了一周所学所看的精华,它们往往来自不只一本书 我们之所以将自然界分类,组织成各种概念,并按其分类,主要是因为我们是整个口语交流社会共同遵守的协定的参与者,这个协定以语言的形式固定下来.除非赞成这个协定中规定的有关语言信息的组织和分类,否则我们根本无法交谈. ——Benjamin Lee Whorf Learning and Asking 为什么选择面向对象? 机器语言.汇编语言.面向过程的语言,通过一层层…
Paper: Object Recognition from Scale-Invariant Features Sorce: http://www.cs.ubc.ca/~lowe/papers/iccv99.pdf SIFT 即Scale Invariant Feature Transfrom, 尺度不变变换,由David Lowe提出.是CV最著名也最常用的特征.在图像目标识别的应用中,常常要求图像的特征有很好的roboust即不容易受到平移,旋转,尺度缩放,光照,仿射的英雄.SIFT算子具有…
Contribution: 1) Systematic interpretation to existing face sketch synthesis methods. 2) Bayesian face sketch synthesis: apply the spatial neighboring constraint to both the neighbor selection model and the wieght computation model. Problem: s代表targe…
Improved Textured Networks: Maximizing quality and diversity in Feed-Forward Stylization and Texture Synthesis https://arxiv.org/abs/1701.02096v1 本文最主要的贡献有两点: 1. 引入instance normalization 代替 batch normalization 2. 通过使得生产器从Julesz ensemble无偏采样来增加texture…
在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习.有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准.如果说监督学习的目标是预测,那么强化学习就是决策,它通过对周围的环境不断的更新状态,给出奖励或者惩罚的措施,来不断调整并给出新的策略.简单来说,就像小时候你在不该吃零食的时间偷吃了零食,你妈妈知道了会对你做出惩罚,那么下一次就不会犯同样的错误,如果遵守规则,那你妈妈兴许会给你一些奖励,最终的目标都是希望你在该吃饭的时候吃饭,该吃零食…
最近准备用Resnet来解决问题,于是重读Resnet的paper <Deep Residual Learning for Image Recognition>, 这是何恺明在2016-CVPR上发表的一篇paper,在2015年12月已经发布在arXiv上,并且用文中所述的网络在 2015年 的ILSVRC获得分类任务冠军,在2015-COCO detection,segmentation 的冠军. 先说一下新的收获: 结合了caffe的prototxt才知道, F(x) + x ,是 el…
一.Abstract 从近期对unsupervised learning 的研究得到启发,在large-scale setting 上,本文把unsupervised learning 与supervised learning结合起来,提高了supervised learning的性能.主要是把autoencoder与CNN结合起来 二.Key words: SAE;SWWAE; reconstruction:encoder:decoder;VGG-16;Alex-Net 三. Motivati…
AlexNet / VGG-F network visualized by mNeuron. Project 6: Deep LearningIntroduction to Computer Vision Brief Due date: Tuesday, December 6th, 11:55pm Project materials including starter code, training and testing data, and html writeup template: proj…
导读: 本文为论文<Deep Mixture of Diverse Experts for Large-Scale Visual Recognition>的阅读总结.目的是做大规模图像分类(>1000类),方法是混合多个小深度网络实现更多类的分类.本文从以下五个方面来对论文做个简要整理: 背景:简要介绍与本文方法提出的背景和独特性. 方法:介绍论文使用的大体方法. 细节:介绍论文中方法涉及到的问题及解决方案. 实验:实验结果和简要分析. 总结:论文主要特色和个人体会. 一.背景 1.目标…