keras的Embedding层】的更多相关文章

keras.layers.embeddings.Embedding(input_dim, output_dim, embeddings_initializer='uniform', embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=False, input_length=None) 输入shape:形如(samples,sequence_length)的2D张…
最近看了吴恩达老师的深度学习课程,又看了python深度学习这本书,对深度学习有了大概的了解,但是在实战的时候, 还是会有一些细枝末节没有完全弄懂,这篇文章就用来总结一下用keras实现深度学习算法的时候一些我自己很容易搞错的点. 一.与序列文本有关 1.仅对序列文本进行one-hot编码 比如:使用路透社数据集(包含许多短新闻及其对应的主题,包括46个不同的主题,每个主题有至少10个样本) from keras.datasets import reuters (train_data,train…
Embedding tflearn.layers.embedding_ops.embedding (incoming, input_dim, output_dim, validate_indices=False, weights_init='truncated_normal', trainable=True, restore=True, reuse=False, scope=None, name='Embedding') Embedding layer for a sequence of int…
一.网络层 keras的层主要包括: 常用层(Core).卷积层(Convolutional).池化层(Pooling).局部连接层.递归层(Recurrent).嵌入层( Embedding).高级激活层.规范层.噪声层.包装层,当然也可以编写自己的层. 对于层的操作 layer.get_weights() #返回该层的权重(numpy array) layer.set_weights(weights)#将权重加载到该层 config = layer.get_config()#保存该层的配置…
示例解释: model = Sequential() model.add(Embedding(1000, 64, input_length=10)) #输入中的数值最大值是1000,输出的第三维度是64,输入的长度是10. keras.layers.Embedding(input_dim, output_dim, embeddings_initializer='uniform', embeddings_regularizer=None, activity_regularizer=None, em…
首先,我们有一个one-hot编码的概念. 假设,我们中文,一共只有10个字...只是假设啊,那么我们用0-9就可以表示完 比如,这十个字就是“我从哪里来,要到何处去” 其分别对应“0-9”,如下: 我  从  哪  里  来  要  到  何  处  去 0    1    2    3   4    5   6    7    8   9 那么,其实我们只用一个列表就能表示所有的对话 如:我  从  哪  里  来  要  到  何  处  去  ——>>>[0 1 2 3 4 5…
继上文https://blog.csdn.net/weixin_42078618/article/details/82999906探讨了embedding层的降维效果,时隔一个月,分享一下嵌入层在NPL领域的巨大作用. 本文的发表建立在了解文本转向量(如one-hot)的用法的前提上. 首先,继续假设我们有一句话,叫“公主很漂亮”,如果我们使用one-hot编码,可能得到的编码如下: 公 [0 0 0 0 1]主 [0 0 0 1 0]很 [0 0 1 0 0]漂 [0 1 0 0 0] 亮 […
[阿里DIN] 从论文源码学习 之 embedding层如何自动更新 目录 [阿里DIN] 从论文源码学习 之 embedding层如何自动更新 0x00 摘要 0x01 DIN源码 1.1 问题 1.2 答案 0x02 原理 2.1 随机梯度下降SGD 2.2 反向传播 2.3 自动求导 0x03 优化器 3.1 Optimizer基类 3.2 反向传播过程 3.2.1 compute_gradients 3.2.2 gradients 3.2.3 apply_gradients 3.3 Ad…
import keras model = keras.models.Sequential([ keras.layers.Dense(4, activation='relu', input_dim=1, name='layer1', kernel_initializer='one'), keras.layers.Dense(1, activation='sigmoid', name='layer2') ]) model.compile(optimizer='adam', loss='mse') m…
Keras的TimeDistributed层主要用途是在时间维度上进行全连接. 比如Faster RCNN,1张图生成了16个ROI,需要对每一个ROI进行分类和回归,ROI的维度是7×7×512,长度和宽度都是7,512个通道,16个ROI的的维度是16×7×7×512,需要得到16个分类和回归,这个时候就可以使用TimeDistributed层了.一次性输入16×7×7×512,进行全连接,相当于16个时间切片,对每个7×7×512的切片分别进行全连接(Dense),最后就得到16个分类和回…
1. 动机 我近期在研究一个 NLP 项目,根据项目的要求,需要能够通过设计算法和模型处理单词的音节 (Syllables),并对那些没有在词典中出现的单词找到其在词典中对应的押韵词(注:这类单词类似一些少见的专有名词或者通过组合产生的新词,比如 Brexit,是用 Britain 和 exit 组合在一起创造出来表示英国脱欧的新词).在这两个任务中,能够对单词的发音进行预测是非常有必要的.本文详细记录我解决该问题的过程,希望能够对初学者和具有一定经验的朋友有所帮助.本文代码实现均基于 Pyth…
在之前的文章中谈到了文本向量化的一些基本原理和概念,本文将介绍Word2Vec的代码实现 https://www.cnblogs.com/dogecheng/p/11470196.html#Word2Vec Word2Vec论文地址 https://arxiv.org/abs/1301.3781 1.Embedding 与one-hot编码相比,词嵌入可以将更多的信息塞入更低的维度中 下面我们用 Keras 完成一个词嵌入的学习,Keras 的 Embedding 层的输入是一个二维整数张量,…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 上一篇文章中一直围绕着CNN处理图像数据进行讲解,而CNN除了处理图像数据之外,还适用于文本分类.CNN模型首次使用在文本分类,是Yoon Kim发表的"Convolutional Neural Networks for Sentence Classification"论文中.在讲解text-CNN之前,先介绍自然语言处理和Keras对自然语言的预处理.…
本节讲深度学习用于文本和序列 用于处理序列的两种基本的深度学习算法分别是循环神经网络(recurrent neural network)和一维卷积神经网络(1D convnet) 与其他所有神经网络一样,深度学习模型不会接收原始文本作为输入,它只能处理数值张量.文本向量化(vectorize)是指将文本转换为数值张量的过程.它有多种实现方法 将文本分割为单词,并将每个单词转换为一个向量 将文本分割为字符,并将每个字符转换为一个向量 提取单词或字符的 n-gram,并将每个 n-gram 转换为一…
1.对于简单的定制操作,可以通过使用layers.core.Lambda层来完成.该方法的适用情况:仅对流经该层的数据做个变换,而这个变换本身没有需要学习的参数. # 切片后再分别进行embedding和average pooling import numpy as np from keras.models import Sequential from keras.layers import Dense, Activation,Reshape from keras.layers import m…
Lambda层 keras.layers.core.Lambda(function, output_shape=None, mask=None, arguments=None) 本函数用以对上一层的输出施以任何Theano/TensorFlow表达式 如果你只是想对流经该层的数据做个变换,而这个变换本身没有什么需要学习的参数,那么直接用Lambda Layer是最合适的了. 导入的方法是 from keras.layers.core import Lambda Lambda函数接受两个参数,第一…
软件环境(Windows): Visual Studio Anaconda CUDA MinGW-w64 conda install -c anaconda mingw libpython CNTK TensorFlow-gpu Keras-gpu Theano MKL CuDNN 参考书籍:谢梁 , 鲁颖 , 劳虹岚.Keras快速上手:基于Python的深度学习实战 Keras 简介 Keras 这个名字来源于希腊古典史诗<奥德赛>的牛角之门(Gate of Horn):Those tha…
catalogue . 引言 . 一些基本概念 . Sequential模型 . 泛型模型 . 常用层 . 卷积层 . 池化层 . 递归层Recurrent . 嵌入层 Embedding 1. 引言 Keras是一个高层神经网络库,Keras由纯Python编写而成并基Tensorflow或Theano 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性) 支持CNN和RNN,或二者的结合 支持任意的链接方案(包括多输入和多输出训练) 无缝CPU和GPU切换 0x1: Kera…
所属分类:Keras Keras FAQ:常见问题 如何引用Keras? 如何使Keras调用GPU? 如何在多张GPU卡上使用Keras "batch", "epoch"和"sample"都是啥意思? 如何保存Keras模型? 为什么训练误差(loss)比测试误差高很多? 如何获取中间层的输出? 如何利用Keras处理超过机器内存的数据集? 当验证集的loss不再下降时,如何中断训练? 验证集是如何从训练集中分割出来的? 训练数据在训练时会被随…
今年 1 月 12 日,Keras 作者 François Chollet‏ 在推特上表示因为中文读者的广泛关注,他已经在 GitHub 上展开了一个 Keras 中文文档项目.而昨日,François Chollet‏ 再一次在推特上表示 Keras 官方文档已经基本完成!他非常感谢翻译和校对人员两个多月的不懈努力,也希望 Keras 中文使用者能继续帮助提升文档质量. 这一次发布的是 Keras 官方中文文档,它得到了严谨的校对而提升了整体质量.但该项目还在进行中,虽然目前已经上线了很多 A…
一.pad_sequences from keras.preprocessing.sequence import pad_sequences keras只能接受长度相同的序列输入.因此如果目前序列长度参差不齐,这时需要该模块 该函数是将序列转化为经过填充以后的一个长度相同的新序列新序列 二.keras中的Sequential模型 Sequential更准确的应该理解为堆叠,通过堆叠许多层,构建出深度神经 Sequential模型的核心操作是添加layers(图层),以下展示如何将一些最流行的图层…
引自:http://blog.csdn.net/sinat_26917383/article/details/72857454 中文文档:http://keras-cn.readthedocs.io/en/latest/ 官方文档:https://keras.io/ 文档主要是以keras2.0. . Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Application中五款已训练模型.VGG16框架(Sequent…
在看keras文档embedding层的时候,不太理解其中的input_dim 和input_length 这两个参数,查阅了一下资料,记录下来. keras.layers.Embedding(input_dim, output_dim, embeddings_initializer='uniform', embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=Fa…
catalogue . 训练集 . 数据预处理 . 神经网络模型设计(对话集 <-> 问题集) . 神经网络模型设计(问题集 <-> 回答集) . RNN神经网络 . 训练 . 效果验证 1. 训练集 Mary moved to the bathroom. John went to the hallway. Where Daniel went back to the hallway. Sandra moved to the garden. Where John moved to t…
https://github.com/MoyanZitto/keras-cn/blob/master/docs/legacy/blog/word_embedding.md 这个链接将带有embeding层的cnn实现及训练的过程讲的很清楚 构建好带有embedding层的textcnn模型后,model.fit时传入的x_train是二维的要训练的词对应的标号.下面的代码会将词进行标号. import keras.preprocessing.text as Tfrom keras.preproc…
源码:https://github.com/keras-team/keras/blob/master/examples/imdb_bidirectional_lstm.py 及keras中文文档 1.imdb数据集 数据集来自 IMDB 的 25,000 条电影评论,以情绪(正面/负面)标记.评论已经过预处理,并编码为词索引(整数)的序列表示.为了方便起见,将词按数据集中出现的频率进行索引,例如整数 3 编码数据中第三个最频繁的词. 这允许快速筛选操作,例如:「只考虑前 10,000 个最常用的…
问题1:CUDA_ERROR_OUT_OF_MEMORY: How to activate multiple GPUs from Keras in Tensorflow import keras.backend as K config = K.tf.ConfigProto() config.gpu_options.allow_growth = True session = K.tf.Session(config=config) 讀作者的code就能了解數據的格式了.在process_data.p…
https://blog.csdn.net/chuchus/article/details/78386059 词汇是语料库的基本元素, 所以, 使用embedding layer来学习词嵌入, 将一个词映射成为固定维度的稠密向量. 有了这一步, 才能构造矩阵, 实现神经网络的前向传播. 如何使用? 从头训练 就像word2vec一样, 这一层是可学习的, 用随机数initialize , 通过BP去调整. pre-trained + fine tuning 用其他网络(如 word2vec) 训…
随机初始化Embedding from keras.models import Sequential from keras.layers import Embedding import numpy as np model = Sequential() model.add(Embedding(1000, 64, input_length=10)) # the model will take as input an integer matrix of size (batch, input_lengt…
1. one-hot编码 # 字符集的one-hot编码 import string samples = ['zzh is a pig','he loves himself very much','pig pig han'] characters = string.printable token_index = dict(zip(range(1,len(characters)+1),characters)) max_length =20 results = np.zeros((len(sampl…