使用weka进行Cross-validation实验】的更多相关文章

转自:http://www.vanjor.org/blog/2010/10/cross-validation/ 交叉验证(Cross-Validation): 有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法.于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证. 一开始的子集被称为训练集.而其它的子集则被称为验证集或测试集. 交叉验证对于人工智能,机器学习,模式识别,分类器等研究都具有很强的指导与验证意义. 基本思想是把在某种意义下将原始数据(data…
交叉验证(Cross Validation)方法思想 Cross Validation一下简称CV.CV是用来验证分类器性能的一种统计方法. 思想:将原始数据(dataset)进行分组,一部分作为训练集(train set),另一部分作为验证集(validation set),首先用训练集对分类器进行训练,再利用验证集来测试训练得到的模型(model),以此来作为评价分类器的性能指标. 常用CV方法: Hold-Out Method 将原始数据随机分为两组,一组作为训练集,一组作为验证集,利用训…
S折交叉验证(S-fold cross validation) 觉得有用的话,欢迎一起讨论相互学习~Follow Me 仅为个人观点,欢迎讨论 参考文献 https://blog.csdn.net/aliceyangxi1987/article/details/73532651 李航-统计学习方法 https://blog.csdn.net/jasonding1354/article/details/50562513 知乎问题 引用<统计学习方法> S折交叉验证 首先随机地将已给数据切分为S个…
参考    交叉验证      交叉验证 (Cross Validation)刘建平 一.训练集 vs. 测试集 在模式识别(pattern recognition)与机器学习(machine learning)的相关研究中,经常会将数据集(dataset)分为训练集(training set)跟测试集(testing set)这两个子集,前者用以建立模型(model),后者则用来评估该模型对未知样本进行预测时的精确度,正规的说法是泛化能力(generalization ability).怎么将…
preface:做实验少不了交叉验证,平时常用from sklearn.cross_validation import train_test_split,用train_test_split()函数将数据集分为训练集和测试集,但这样还不够.当需要调试参数的时候便要用到K-fold.scikit给我们提供了函数,我们只需要调用即可. sklearn包中cross validation的介绍:在这里.其中卤煮对3.1.2. cross validation iterators这一小节比较注意.先做这一…
k-folder cross-validation:k个子集,每个子集均做一次测试集,其余的作为训练集.交叉验证重复k次,每次选择一个子集作为测试集,并将k次的平均交叉验证识别正确率作为结果.优点:所有的样本都被作为了训练集和测试集,每个样本都被验证一次.10-folder通常被使用. K * 2 folder cross-validation是k-folder cross-validation的一个变体,对每一个folder,都平均分成两个集合s0,s1,我们先在集合s0训练用s1测试,然后用…
  以下简称交叉验证(Cross Validation)为CV.CV是用来验证分类器的性能一种统计分析方法,基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set),首先用训练集对分类器进行训练,在利用验证集来测试训练得到的模型(model),以此来做为评价分类器的性能指标.常见CV的方法如下: 1).Hold-Out Method 将原始数据随机分为两组,一组做为训练集,一组做为验证集,利用训练集训…
交叉验证是在机器学习建立模型和验证模型参数时常用的办法.交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏.在此基础上可以得到多组不同的训练集和测试集,某次训练集中的某样本在下次可能成为测试集中的样本,即所谓"交叉". 那么什么时候才需要交叉验证呢?交叉验证用在数据不是很充足的时候.比如在我日常项目里面,对于普通适中问题,如果数据样本量小于一万条,我们就会采用交叉验证来训练优化选择模型.如果样本…
来源:CSDN: boat_lee 简单交叉验证 hold-out cross validation 从全部训练数据S中随机选择s个样例作为训练集training set,剩余的作为测试集testing set: 通过对测试集训练 ,得到假设函数或者模型: 在测试集中对每一个样本根据假设函数或者模型,得到训练集的类标,求出分类正确率: 选择具有最大分类率的模型或者假设. 测试集和训练集分开,避免过拟合现象. k折交叉验证 k-fold cross validation 将全部训练数据S分成k个不…
Cross Validation done wrong Cross validation is an essential tool in statistical learning 1 to estimate the accuracy of your algorithm. Despite its great power it also exposes some fundamental risk when done wrong which may terribly bias your accurac…