前面两篇介绍了SOM的基本概念和算法,第一部分,第二部分,本篇具体展开一下应用中的一些trick设定. SOM设计细节 输出层设计 输出层神经元数量设定和训练集样本的类别数相关,但是实际中我们往往不能清除地知道有多少类.如果神经元节点数少于类别数,则不足以区分全部模式,训练的结果势必将相近的模式类合并为一类:相反,如果神经元节点数多于类别数,则有可能分的过细,或者是出现"死节点",即在训练过程中,某个节点从未获胜过且远离其他获胜节点,因此它们的权值从未得到过更新. 不过一般来说,如果对…
1981年芬兰 Helsink 大学的 T·Kohonen 教授提出一种自组织特征映射网 (Self-Organizing Feature Map , SOFM ), 又称 Kohonen 网 . Kohonen 认为 ,一个神经网络接受外界输入模式时, 将会分为不同的对应区域, 各区域对输入模式具有不同的响应特征,而且这个过程是自动完成的. 自组织特征映射正是根据这一看法提出来的 ,其特点与人脑的自组织特性相类似. 一.SOFM网生物学基础 生物学研究表明,在人脑感觉通道上,神经元的组织原理是…
from:https://blog.csdn.net/u012931582/article/details/70314859 2017年04月21日 14:54:10 阅读数:4369 前言 在这里,先介绍几个概念,也是图像处理当中的最常见任务. 语义分割(semantic segmentation) 目标检测(object detection) 目标识别(object recognition) 实例分割(instance segmentation) 语义分割 首先需要了解一下什么是语义分割(s…
原文地址:https://zhuanlan.zhihu.com/p/27642620 如果要提出一个新的神经网络结构,首先就需要引入像循环神经网络中“时间共享”这样的先验知识,降低学习所需要的训练数据需求量. 而卷积神经网络同样也引入了这样的先验知识:“空间共享”.下面就让我们以画面识别作为切入点,看看该先验知识是如何被引入到神经网络中的. 目录 视觉感知 画面识别是什么 识别结果取决于什么 图像表达 画面识别的输入 画面不变形 前馈神经网络做画面识别的不足 卷积神经网络做画面识别 局部连接 空…
1 介绍 拉普拉斯特征映射(Laplacian Eigenmaps)是一种不太常见的降维算法,它看问题的角度和常见的降维算法不太相同,是从局部的角度去构建数据之间的关系.也许这样讲有些抽象,具体来讲,拉普拉斯特征映射是一种基于图的降维算法,它希望相互间有关系的点(在图中相连的点)在降维后的空间中尽可能的靠近,从而在降维后仍能保持原有的数据结构. 2 推导 拉普拉斯特征映射通过构建邻接矩阵为 $W$ (邻接矩阵定义见这里) 的图来重构数据流形的局部结构特征.其主要思想是,如果两个数据 实例 $i$…
原文链接:http://www.atyun.com/16821.html 扩展阅读: https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/  is a really good tutorial of time series forecasting using LSTM. 长短期记忆网络,通常称为“LSTM”(Long Short Term Mem…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- SOM自组织映射神经网络模型 的R语言实现 笔者前言: 最近发现这个被发明于1982年的方法在如今得到了极为广泛的应用,在提倡深度学习的时候,基于聚类的神经网络方法被众多人青睐.但是呢, 网上貌似木有人贴出关于SOM模型的R语言实现,我就抛砖引玉一下.一.SOM模型定义与优劣 自组织映射 ( Self Organization Map, SOM…
在使用fast rcnn以及faster rcnn做检测任务的时候,涉及到从图像的roi区域到feature map中roi的映射,然后再进行roi_pooling之类的操作.比如图像的大小是(600,800),在经过一系列的卷积以及pooling操作之后在某一个层中得到的feature map大小是(38,50),那么在原图中roi是(30,40,200,400),在feature map中对应的roi区域应该是roi_start_w = round(30 * spatial_scale);r…
笔记要点出错分析与总结 /**MyBatis_映射文件_参数处理_单个参数&多个参数&命名参数 * _POJO&Map&TO 三种方式及举例 _ * 单个参数 : #{参数名} ,取出参数值; [mybatis 不会做特殊处理] * 多个参数 : 注册接口:public Employee getEmpByIdAndLaseName(Integer id,String lastName); * 多个参数会被封装成一个map,key :param1...paramN 或者参数索…
https://www.jianshu.com/p/1ff732094f21 映射前后(Before and After Map Action) 你可能偶尔需要在映射发生前后执行自定义逻辑.这应该很少见,这种操作放在AutoMapper之外更加合理.不过你还是可以使用before/after 映射动作来达到目的: Mapper.Initialize(cfg => { cfg.CreateMap<Source, Dest>() .BeforeMap((src, dest) => sr…
Lecture 5 CNN 课堂笔记参见:https://zhuanlan.zhihu.com/p/22038289?refer=intelligentunit 不错的总结笔记:https://blog.csdn.net/sugar_girl/article/details/79108709 1.卷积核步长公式:(N-F+2*padding)/stride+1=new_N N:原图形宽,F:filter宽,padding:填充宽度 2.卷积核参数公式:5*5*3的10个filter:5*5*3+…
本文翻译自 SATYA MALLICK 的  "Neural Networks : A 30,000 Feet View for Beginners" 原文链接: https://www.learnopencv.com/neural-networks-a-30000-feet-view-for-beginners/ 翻译:coneypo 在这篇文章中,我会向大家简要的介绍下 Neural Networks / 神经网络: 可以作为 Machine Learning / 机器学习 和 D…
caffe特征可视化的代码例子 不少读者看了我前面两篇文章 总结一下用caffe跑图片数据的研究流程 deep learning实践经验总结2--准确率再次提升,到达0.8.再来总结一下 之后.想知道我是怎么实现特征可视化的. 简单来说,事实上就是让神经网络正向传播一次.然后把某层的特征值给取出来.然后转换为图片保存. 以下我提供一个demo,大家能够依据自己的需求改动. 先看看我的demo的用法. visualize_features.bin net_proto pretrained_net_…
写在前面的 接触神经网络(ANN)的时间很长了,以前也只是学了学原理,做过一个BPN的练习,没有系统的总结过,最近看Torch的源码,对MLP有了更多的了解,写写自己学到的东西吧,算是做了一次总结! ANN的特点 (1) 高度的并行性 人工神经网络是由许多相同的简单处理单元并联组合而成,虽然每个单元的功能简单,但大量简单单元的并行活动,使其对信息的处理能力与效果惊人. (2) 高度的非线性全局作用 神经网络系统是由大量简单神经元构成的,每个神经元接受大量其他神经元的输入,通过非线性输入.输出关系…
感觉是有很久没有回到博客园,发现自己辛苦写的博客都被别人不加转载的复制粘贴过去真的心塞,不过乐观如我,说明做了一点点东西,不至于太蠢,能帮人最好.回校做毕设,专心研究多流形学习方法,生出了考研的决心.话不多说,看论文带大家走入Joshua B. Tenenbaum的Isomap的世界! 大数据时代的人总是那么的浮躁不安,高维并不可怕,事实的本质总是简单而单调的,因此流形学习理念中直接假设高维的数据都存在低维的本征结构.自“流形”这个概念被提出以来,许多人都在寻找一个高维数据中最现实的问题——降维…
转自:https://www.zhihu.com/question/35602879 1.问题: SVM中,对于线性不可分的情况下,我们利用升维,把低维度映射到到维度让数据变得“更可能线性可分”,为了避免维度爆炸,我们巧妙的运用了核函数,避免了在高维度空间的计算,而只需要在低维度空间进行计算. 对于核函数,有: 多项式核: 高斯核: 对于多项式核,我们把低维度映射到高维度,我们可以从公式中很容易的理解,但是对于高斯核,“把维度映射到无穷多维”,是如何理解的?如何看出是“无穷多维”的? 2.回答…
CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络) CNN 专门解决图像问题的,可用把它看作特征提取层,放在输入层上,最后用MLP 做分类. RNN 专门解决时间序列问题的,用来提取时间序列信息,放在特征提取层(如CNN)之后. DNN 说白了就是 多层网络,只是用了很多技巧,让它能够 deep .   什么是深度学习 深度学习=深度神经网络+机器学习 人工智能 > 机器学习 > 表示学习 > 深度学习   神经元模型 输入信号.加权求和.加偏置.激活函数.输出 全连…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! LeNet / AlexNet / GoogLeNet / VGGNet/ ResNet 前言:这个系列文章将会从经典的卷积神经网络历史开始,然后逐个讲解卷积神经网络结构,代码实现和优化方向. THE HISTORY OF NEURAL NETWORKS http://dataconomy.com/2017/04/history-neural-networks/…
It shows how to use RBFSampler and Nystroem to approximate the feature map of an RBF kernel for classification with an SVM on the digits dataset. Results using a linear SVM in the original space, a linear SVM using the approximate mappings and using…
下面是实验室大牛师兄自己写的一段总结,主要内容是Laplacian Eigenmap中的核心推导过程. 有空还是多点向这位师兄请教,每次都会捡到不少金子. Reference : <Laplacian Eigenmaps for Dimensionality Reduction and Data Representation>,2003,MIT…
一 实例探索 上一节我们介绍了卷积神经网络的基本构建,比如卷积层.池化层以及全连接层这些组件.事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络.最直观的方式之一就是去看一些案例,就像很多人通过看别人的代码来学习编程一样,通过研究别人构建有效组件的案例是个不错的办法.实际上在计算机视觉任务中表现良好的神经网络框架往往也适用于其它任务,也许你的任务也不例外.也就是说,如果有人已经训练或者计算出擅长识别猫.狗.人的神经网络或者神经网络框架,而你的计算…
MySQL存储引擎介绍 MySQL之存储引擎 本节目录 一 存储引擎解释 二 MySQL存储引擎分类 三 不同存储引擎的使用 一 存储引擎解释 首先确定一点,存储引擎的概念是MySQL里面才有的,不是所有的关系型数据库都有存储引擎这个概念,后面我们还会说,但是现在要确定这一点. 在讲清楚什么是存储引擎之前,我们先来个比喻,我们都知道录制一个视频文件,可以转换成不同的格式,例如mp4,avi,wmv等,而存在我们电脑的磁盘上也会存在于不同类型的文件系统中如windows里常见的ntfs.fat32…
有时候特征x和目标y不呈线性关系,线性模型y=wx+b不能很好地反映事物的规律或者无法对事物进行有效分类,因此此时我们需要使用非线性模型. (x=([x1,x2,...,xn])T,w=([w1,w2,...,wn])T) 比如说下图的分类问题,显然无论用什么样的直线都很难把圈圈和叉叉很好地分隔开来,但是用一个大圆圈却能很好地进行分隔. 这个大圆圈就是使用了非线性模型拟合的结果,以往线性模型中的分类超平面(这里是直线)变成了圆:−x12​−x22​+0.6=0. 可以看到,此时假设函数的特征不是…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(一).MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(二)中,采用全连接神经网络(784-300-10),分别用非深度学习框架和基于pytorch实现,训练结果相当. 这里采用卷积神经网络(CNN)中著名的LeNet-5网…
参数命名 POJO 如果多个参数,正好是业务逻辑的数据模型,那么我们就可以直接传入POJO,这样#{}中就可以直接使用属性名 Map 如果多个参数不是业务逻辑的数据模型,没有对应的POJO,为了方便,我们可以传入一个map,此时#{key}就是取出map的值 在接口中创建一个新方法: Employee getEmpByMap(Map<String,Object> map); 创建新的<select>标签 <select id="getEmpByMap" r…
原文地址:http://blog.csdn.net/pkueecser/article/details/8229166 在信息检索.分类体系中,有一系列的指标,搞清楚这些指标对于评价检索和分类性能非常重要,因此最近根据网友的博客做了一个汇总. 准确率.召回率.F1 信息检索.分类.识别.翻译等领域两个最基本指标是召回率(Recall Rate)和准确率(Precision Rate),召回率也叫查全率,准确率也叫查准率,概念公式: 召回率(Recall)      =  系统检索到的相关文件 /…
一.SPA 不是指水疗.是 single page web application 的缩写.中文翻译为 单页应用程序 或 单页Web应用,更多解释请自行搜索. 所有的前端人员都应该明白我们的页面的 url 构成:http://www.fengcms.com/index.html?name=fungleo&old=32#mylove/is/world/peace 如上的 url 由以下部分组成:协议.域名.文件名称.get参数.锚点 1.http:// 规定了页面采用的协议. 2.www.feng…
浏览器 jquery1.9.1min.js 报脚本错误 无jquery.min.map 文件 最近在浏览个人网站的时候就遇到了这个问题 我先说一下什么是source map文件. source map文件是js文件压缩后,文件的变量名替换对应.变量所在位置等元信息数据文件,一般这种文件和min.js主文件放在同一个目录下. 比如压缩后原变量是map,压缩后通过变量替换规则可能会被替换成a,这时source map文件会记录下这个mapping的信息,这样的好处就是说,在调试的时候,如果有一些JS…
神经网络基本模型: 1.前向神经网络:无圈的有向图N=(V,E,W),其中,V为神经元集合,E为连结权值集合,W为每一连结赋予一实值的权重. 神经元集V可以被分成无接受域的输入结点集V1,无投射域的输出结点集V0和既有接受域又有投射域的隐结点集VH. 一般的前向神经网络包括一个输入层.一个输出层和若干隐单元. 隐单元可分层也可以不分层.若分层,则成为多层前向神经网络. 网络的输入.输出神经元的激励函数一般取线性函数,而隐单元则为非线性函数. 前向神经网络的输入单元从外部环境中接受信号,经处理将输…
http://blog.sina.com.cn/s/blog_98238f850102w7ik.html 目前所有的ANN神经网络算法大全 (2016-01-20 10:34:17) 转载▼ 标签: it   概述 1 BP神经网络 1.1 主要功能 1.2 优点及其局限性 2 RBF(径向基)神经网络 2.1 主要功能 2.2 优点及其局限性 3 感知器神经网络 3.1 主要功能 3.2 优点及其局限性 4 线性神经网络 4.1 主要功能 4.2优点及其局限性 5自组织神经网络 5.1 自组织…