一.前人种树 博客:Kosaraju算法解析: 求解图的强连通分量…
这个算法是自己实现的Kosaraju算法,附带一个缩点,其实缩点这个跟Kosaraju算法没有什么关系,应该其他的强连通分量算法计算出每个点所属的强连通分量之后也可以这样缩点. 算法复杂度: Kosaraju算法:初始化,加边,两次dfs,复杂度O(n+m) 强连通分量缩点算法:遍历每个点每条边,复杂度O(n+m) 对边排序去重:复杂度O(n+mlogm) 注意: 1.最好先 Init() ,然后再 AddEdge() 2.维护缩点时点的性质对新点的影响在 dfs2() 中进行 3.维护缩点时边…
好久没写博客了(都怪作业太多,绝对不是我玩的太嗨了) 所以今天要写的是一个高大上的东西:强连通 首先,是一些强连通相关的定义 //来自度娘 1.强连通图(Strongly Connected Graph)是指在有向图G中,如果对于每一对vi.vj,vi≠vj,从vi到vj和从vj到vi都存在路径,则称G是强连通图. 2.有向图的极大强连通子图,称为强连通分量(strongly connected components). 当然,看定义是肯定看不懂的,所以,我举个栗子说明一下 我们以下图为例,这是…
输入一个有向图,计算每个节点所在强连通分量的编号,输出强连通分量的个数 #include<iostream> #include<cstring> #include<vector> using namespace std; ; struct Edge{ int go,next; }; ,book[maxn]; vector<int> S; vector<int> G[maxn],G2[maxn]; void dfs(int u) { vis[u]=…
https://www.byvoid.com/blog/scc-tarjan 主要思想 Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树.搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量. 定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号.由定义可以得出, Low(u)=Min { DFN(u), Low(v),(u,v)为树枝边,u为v的父节点 DFN…
求有向图的强连通分量     Kosaraju算法可以求出有向图中的强连通分量个数,并且对分属于不同强连通分量的点进行标记. (1) 第一次对图G进行DFS遍历,并在遍历过程中,记录每一个点的退出顺序.以下图为例: G图 结点第二次被访问即为退出之时,那么我们可以得到结点的退出顺序 (2)倒转每一条边的方向,构造出一个反图G’.然后按照退出顺序的逆序对反图进行第二次DFS遍历.我们按1.4.2.3.5的逆序第二次DFS遍历: G`图   访问过程如下: 每次遍历得到的那些点即属于同一个强连通分量…
文字描述 有向图强连通分量的定义:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.有向图的极大强连通子图,称为强连通分量(strongly connected components). 用深度优先搜索求有向图的强连通分量的方法如下并假设有向图的存储结构为十字链表. 1 在有向图G上,从某个定点出发沿以该顶点为尾的弧…
有向图的强连通分量即,在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 采用的算法是Kosaraju算法. 算法原理:对于图G,转置图(同图中的每边的方向相反)具有和原图完全一样的强连通分量. 具体实现: 1.对原图G进行深度优先遍历,记录每个节点的离开时间time[i]. 2…
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. 大体来说有3中算法Kosaraju,Trajan,Gabow这三种!后续文章中将相继介…
有向图的强连通分量 定义:在有向图\(G\)中,如果两个顶点\(v_i,v_j\)间\((v_i>v_j)\)有一条从\(v_i\)到\(v_j\)的有向路径,同时还有一条从\(v_j\)到\(v_i\)的有向路径,则称两个顶点强连通(\(strongly\ connected\)).如果有向图\(G\)的每两个顶点都强连通,称\(G\)是一个强连通图.有向图的极大强连通子图,称为强连通分量(\(strongly\ connected\ components\)). 万能的\(Tarjan\)算…
在https://www.byvoid.com/zhs/blog/scc-tarjan中关于Tarjan算法的描述非常好,转述如下: 首先解释几个概念: 有向图强连通分量:在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected). 如果有向图G的每两个顶点都强连通,则称G是一个强连通图. 非强连通图有向图的极大强连通子图,成为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因…
原文地址:https://blog.csdn.net/qq_16234613/article/details/77431043 一.解释 在有向图G中,如果两个顶点间至少存在一条互相可达路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 求解有向图的强连通分量算法有很多,例如Kosaraju,Gabow和Tarjan算…
题目链接 题意: 给定一张有向图.找出全部强连通分量,并输出. 思路:有向图的强连通分量用Tarjan算法,然后用map映射,便于输出,注意输出格式. 代码: #include <iostream> #include <cstdio> #include <cstring> #include <map> #include <algorithm> using namespace std; const int MAXN = 2000; const in…
一.dfs框架: vector<int>G[maxn]; //存图 int vis[maxn]; //节点访问标记 void dfs(int u) { vis[u] = ; PREVISIT(u); //访问节点u之前的操作 int d = G[u].size(); ; i < d; i++)//枚举每条边 { int v = G[u][i]; if(!vis[v])dfs(v); } POSTVISIT(u); //访问节点u之后的操作 } 二.无向图连通分量 void find_cc…
给一张有向图G, 求一个结点数最大的结点集,使得该结点集中任意两个结点u和v满足,要么u可以到达v, 要么v可以到达u(u和v相互可达也可以). 因为整张图可能存在环路,所以不好使用dp直接做,先采用有向图的强连通分量,进行缩点,然后得到一个有向无环图(DAG) 在采用记忆话dp 去做即可 #include <iostream> #include <cstdio> #include <algorithm> #include <string.h> #inclu…
点击打开链接 有向图强联通,Kosaraju算法 缩点后分别入度和出度为0的点的个数 answer = max(a, b); scc_cnt = 1; answer = 0 #include<cstdio> #include<algorithm> #include<vector> #include<cstring> #include<stack> using namespace std; const int maxn = 20000 + 10;…
有向图的连通分量的求解思路 kosaraju算法 逛了很多博客,感觉都很难懂,终于找到一篇能看懂的,摘要记录一下 原博客https://www.cnblogs.com/nullzx/p/6437926.html 关于连通分量是什么自行百度,这里主要说明连通分量的求解方法 基本思路:第一次DFS得出顶点的顺序,根据顶点顺序进行第二次DFS,也就是逆后序遍历(手动模拟一下堆栈就知道第二次DFS的过程就能得出答案). 为什么要两次DFS? 如果从连通分量A中任意一个定点DFS,得不到正确结果.应该按照…
/* 题目大意:有N个cows, M个关系 a->b 表示 a认为b popular:如果还有b->c, 那么就会有a->c 问最终有多少个cows被其他所有cows认为是popular! 思路:强连通分量中每两个节点都是可达的! 通过分解得到最后一个连通分量A, 如果将所有的强连通分量看成一个大的节点,那么A一定是孩子节点(因为我们先 完成的是父亲节点的强连通分量)! 最后如果其他的强连通分量都可以指向A,那么 A中的每一个cow都会被其他cows所有的cows认为popular! *…
在此大概讲一下初学Tarjan算法的领悟( QwQ) Tarjan算法 是图论的非常经典的算法 可以用来寻找有向图中的强连通分量 与此同时也可以通过寻找图中的强连通分量来进行缩点 首先给出强连通分量的定义: 若在有向图G中 存在u到v的路径的同时也存在v到u的路径 则称u与v是强连通的 若G中所有点之间两两之间是强连通的则称G为一个强连通图 一个有向非强连通图的极大强连通子图称为强连通分量 极大强连通子图:G是一个极大强连通子图 当且仅当G是一个强连通图 同时不存在另一个强连通图G'使G是它的真…
百度百科 https://baike.baidu.com/item/tarjan%E7%AE%97%E6%B3%95/10687825?fr=aladdin 参考博文 http://blog.csdn.net/qq_34374664/article/details/77488976 http://blog.csdn.net/mengxiang000000/article/details/51672725 https://www.cnblogs.com/shadowland/p/5872257.h…
Tarjan算法 Tarjan算法是基于dfs算法,每一个强连通分量为搜索树中的一颗子树.搜索时,把当前搜索树中的未处理的结点加入一个栈中,回溯时可以判断栈顶到栈中的结点是不是在同一个强连通分量中.当dfn[u]=low[u]时,以u为根的搜索子树上的所有结点是一个强连通分量,其中dfn[]值表示结点的深度优先数,low[]值表示结点可以到达的优先数最小的祖先. Tarjan伪代码如下: Tarjan(u) { dfn[u] = low[u] = ++dep //dfn[]和low[]的初值 S…
算法描述 tarjan算法思想:从一个点开始,进行深度优先遍历,同时记录到达该点的时间(dfn记录到达i点的时间),和该点能直接或间接到达的点中的最早的时间(low[i]记录这个值,其中low的初始值等于dfn).如图: 假设我们从1开始DFS,那么到达1的时间为1,到达2的时间为2,到达3的时间为3.同时,点1能直接或间接到达的点中,最小时间为1,点2能通过3间接到达点1,所以点2可到达最早的点时间为1,点3可以直接到达点1,故点3到达的最早的点的时间为1.).对于每一个没有被遍历到的点A,如…
参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至少存在一条路径(即a能到b,b也能到a),则称两个顶点强连通:如果该有向图G中任意两顶点都强连通,则称G为强连通图:在一个非强连通图中,若有子图是强连通图,则称该子图为强连通分量. 有向图强连通分量+链式前向星 模板如下: ; ; struct edge { int next,to; }E[MAXN…
题目链接: 点击打开链接 题意: 给定一个有向图,求: 1) 至少要选几个顶点.才干做到从这些顶点出发,能够到达所有顶点 2) 至少要加多少条边.才干使得从不论什么一个顶点出发,都能到达所有顶点     顶点数<= 100 求完强连通分量后,缩点,计算每一个点的入度,出度. 第一问的答案就是入度为零的点的个数, 第二问就是max(n,m) // 入度为零的个数为n, 出度为零的个数为m. //kuangbin巨巨分析非常棒! #include<cstdio> #include<cs…
http://poj.org/problem?id=2186 题意: 一个有向图,求出点的个数(任意点可达). 思路: Kosaraju算法的第一次dfs是后序遍历,而第二次遍历时遍历它的反向图,从标号最大的结点开始遍历. 对于这道题,在求解强连通分量之后,能被所有点可达只可能是最后一个强连通块,根据遍历时的拓扑序,我们可以计算出最后一个的结点个数. 但是我们最后还是要判断一下,这个连通块是不是任意结点可达. #include<iostream> #include<algorithm&g…
芝士: 有向图强连通分量在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.有向图的极大强连通子图,称为强连通分量. 如图中1,2,3,4是一个强连通分量. Kosaraju算法: 如果这是一个无向图,那么从一个节点出发,深搜得到的所有节点都是连通的. 但这是一个有向图,起始节点的不同会导致结果的不同,举个栗子,从5搜…
用十字链表结构写的,根据数据结构书上的描述和自己的理解实现.但理解的不透彻,所以不知道有没有错误.但实验了几个都ok. #include <iostream> #include <vector> using namespace std; //有向图十字链表表示 #define MAX_VERTEX_NUM 20 typedef struct ArcBox{ int tailvex, headvex; //该弧尾和头顶点的位置 struct ArcBox *hlink, *tlink…
  [问题描述] 给定一个有向图,设计一个算法,求解并输出该图的各个强连通分量. package org.xiu68.exp.exp9; import java.util.ArrayList; import java.util.List; import java.util.Stack; public class Exp9_2 { public static void main(String[] args) { int[][] graph=new int[][]{ {0,1,1,0,0}, {1,…
有关概念: 如果图中两个结点可以相互通达,则称两个结点强连通. 如果有向图G的每两个结点都强连通,称G是一个强连通图. 有向图的极大强连通子图(没有被其他强连通子图包含),称为强连通分量.(这个定义在百科上和别的大神的博客中不太一样,暂且采用百科上的定义) Tarjan算法的功能就是求有向图中的强连通分量 思路: 定义DFNi存放访问到i结点的次序(时间戳),Lowi存放i结点及向i下方深搜到的结点中能追溯到的访问次序最小的结点的访问次序(即这些结点回溯上去能找到的最小的DFN值),找到未被访问…
Time Limit: 1000MS   Memory Limit: 10000K Description A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receivin…