首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
[51nod]1229 序列求和 V2(数学+拉格朗日差值)
】的更多相关文章
[51nod]1229 序列求和 V2(数学+拉格朗日差值)
题面 传送门 题解 这种颓柿子的题我可能死活做不出来-- 首先\(r=0\)--算了不说了,\(r=1\)就是个裸的自然数幂次和直接爱怎么搞怎么搞了,所以以下都假设\(r>1\) 设 \[s_p=\sum_{i=1}^n i^pr^i\] 我们要求的就是\(s_k\) 因为有 \[s_k=\sum_{i=1}^n i^kr^i\] \[rs_k=\sum_{i=2}^{n+1}r^{i}(i-1)^k\] 两个柿子减一减 \[(r-1)s_k=r^{n+1}n^k-r+\sum_{i=2}^nr…
51nod 1258 序列求和 V4
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1258 1258 序列求和 V4 基准时间限制:8 秒 空间限制:131072 KB 分值: 1280 难度:9级算法题 收藏 关注 T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n). 例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55. 由于结…
51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]
1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50000\) 等幂求和 多项式求逆元\(O(mlogm)\)预处理伯努利数,然后可以\(O(m)\)回答 因为是任意模数,所以要用拆系数fft 拆系数fft+多项式求逆元,写的爽死了 具体内容可能会写学习笔记 注意: 多项式求逆元里拆系数,不能只更新 .x= ,这样的话y还保留以前的值就错了 因为使用…
51nod 1228 序列求和(伯努利数)
1228 序列求和 题目来源: HackerRank 基准时间限制:3 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 收藏 关注 T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n). 例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55. 由于结果很大,输出S(n) Mod 1000000007的结果即可. Input 第1行:一个数T,表示后面用作输入测…
51nod1229 序列求和 V2 【数学】
题目链接 B51nod1229 题解 我们要求 \[\sum\limits_{i = 1}^{n}i^{k}r^{i}\] 如果\(r = 1\),就是自然数幂求和,上伯努利数即可\(O(k^2)\) 否则,我们需要将式子进行变形 要与\(n\)无关 设 \[F(k) = \sum\limits_{i = 1}^{n} i^{k}r^{i}\] 自然数幂应该是不用去动了,两边乘个\(r\) \[rF(k) = \sum\limits_{i = 2}^{n + 1}r^{i}(i - 1)^{k}…
51nod1229 序列求和 V2
这题...毒瘤吧,可能要写两份代码... 传送门 noteskey 我们考虑这里的复杂度肯定是与 k 相关的,而且平方也是没问题的,那么我们先看看 S(k) 能怎么得到: \[\begin{aligned}S(k)=&\sum_{i=1}^n i^k r^i\\ r·S(k)=&\sum_{i=2}^{n+1} (i-1)^k r^i \\ (r-1)S(k)=& r^{n+1}n^k-r+ \sum_{j=2}^{k-1} r^i((j-1)^k-j^k)\\\\ &\t…
51Nod 1228 序列求和
T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n). 例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55. 由于结果很大,输出S(n) Mod 1000000007的结果即可. Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 5000) 第2 - T + 1行:每行2个数,N, K中间用空格分割.(1 <= N <= 10^18…
P5437-[XR-2]约定【拉格朗日差值,数学期望】
正题 题目链接:https://www.luogu.com.cn/problem/P5437 题目大意 \(n\)个点的完全图,连接\(i,j\)的边权值为\((i+j)^k\).随机选出一个生成树,求期望边权和. \(1\leq n<998244353,1\leq k\leq 10^7\) 解题思路 一条边选出来的概率是\(\frac{2}{n}\)(总共有\(\frac{2}{n(n-1)}\)条,选\(n-1\)条,或者\(Prufer\)序列也能证明) 所以现在考虑怎么求 \[\sum_…
[51nod 1822]序列求和
\(k\leq 200000\) 考虑转化成枚举 \(k\) 的形式 我们错位相减! \[A_k=\sum_{i=1}^N i^K\times R^i \\ RA_k=\sum_{i=2}^{N+1} (i-1)^KR^i \\ (R-1)A_k=N^kR^{N+1}+\sum_{i=1}^{N}[(i-1)^k-i^k]R^i \] 二项式展开! \[(R-1)A_k=N^kR^{N+1}+\sum_{i=1}^{N}[\sum_{j=0}^k(-1)^{k-j}i^{j}-i^k]R^i \…
51nod 1228 序列求和 ( 1^k+2^k+3^k+...+n^k )
C为组合数,B为伯努利数 具体推到过程略 参考博客:http://blog.csdn.net/acdreamers/article/details/38929067# (我的式子和博客中的不一样,不过思想是一样的) 具体见代码: + ; + ; LL C[maxn][maxn]; LL inv[maxn]; LL B[maxn]; LL n, k; void init() { scanf("%lld%lld", &n, &k); } void getC() { C[][…