识别葡萄的一种虫害,比较了传统SIFT和深度学习分类,最后还做了目标检测 分类用的 MobileNet,目标检测 RetinaNet MobileNet 是将传统深度可分离卷积分成了两步,深度卷积和逐点卷积,性能基本不受影响情况下,降低计算量和参数量 RetinaNet 主要提出 focal loss,用于处理目标检测时正负样本不均衡问题,FL的作用如下 网络结构就是 FPN + sub-network + FL FPN是图像金字塔网络,对不同scale的图像进行融合和预测,主要用于目标检测,原…
论文题目<Deep Learning for Hyperspectral Image Classification: An Overview> 论文作者:Shutao Li, Weiwei Song, Leyuan Fang,Yushi Chen, Pedram Ghamisi,Jón Atli Benediktsson 论文发表年份:2019 发表期刊:IEEE Transactions on Geoscience and Remote Sensing 一.高光谱简述 高光谱成像是一项重要的…
1 上采样与下采样 缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的有两个: 使得图像符合显示区域的大小 生成对应图像的缩略图 下采样原理:对于一幅图像I尺寸为M*N,对其进行s倍下采样,即得到(M/s)*(N/s)尺寸的得分辨率图像,当然s应该是M和N的公约数才行,如果考虑的是矩阵形式的图像,就是把原始图像s*s窗口内的图像变成一个像素,这个像素点的值就是窗口内所有像素的均值. 放大图像(或称为上采样(upsampling)或图像插值(interpo…
一 摘要 在本文中,我们提出了一个非常简单的图像分类深度学习框架,它主要依赖几个基本的数据处理方法:1)级联主成分分析(PCA);2)二值化哈希编码;3)分块直方图.在所提出的框架中,首先通过PCA方法学习多层滤波器核,然后使用二值化哈希编码以及分块直方图特征来进行下采样和编码.因此,该框架称为PCANet,并且很容易设计与学习.为了进行比较并且更好的理解,我们还介绍和研究了PCANet的两个类似的框架:RandNet和LDANet.它们与PCANet有相同的拓扑结构,但RandNet的滤波器核…
7.27 暑假开始后,稍有时间,“搞完”金融项目,便开始跑跑 Deep Learning的程序 Hinton 在Nature上文章的代码 跑了3天 也没跑完 后来Debug 把batch 从200改到20 勉强跑出结果 后来开始看 文章等  感觉晕晕乎乎 又翻到:Deep Learning Tutorials 装Theano等,但是python 代码 Debug真是好生恶心 再后来翻到 UFLDL,看着有Exercise 便做了起来. 用了5天刷了9个Exercises. 大概年后吧,在微博上看…
Popular Deep Learning Tools – a review Deep Learning is the hottest trend now in AI and Machine Learning. We review the popular software for Deep Learning, including Caffe, Cuda-convnet, Deeplearning4j, Pylearn2, Theano, and Torch.  comments By Ran B…
In this post, I review the literature on semantic segmentation. Most research on semantic segmentation use natural/real world image datasets. Although the results are not directly applicable to medical images, I review these papers because research o…
文章链接:https://arxiv.org/pdf/1509.06451.pdf 1.关于人脸检测的一些小小总结(Face Detection by Literature) (1)Multi-view Face Detection Using Deep Convolutional Neural Network Train face classifier with face (> 0.5 overlap) and background (<0.5 overlap) images. Comput…
Image Registration is a fundamental step in Computer Vision. In this article, we present OpenCV feature-based methods before diving into Deep Learning. What is Image Registration? Image registration is the process of transforming different images of…
http://blog.revolutionanalytics.com/2016/08/deep-learning-part-1.html Deep Learning Part 1: Comparison of Symbolic Deep Learning Frameworks by Anusua Trivedi, Microsoft Data Scientist Background and Approach This blog series is based on my upcoming t…
HOME ABOUT CONTACT SUBSCRIBE VIA RSS   DEEP LEARNING FOR ENTERPRISE Distributed Deep Learning, Part 1: An Introduction to Distributed Training of Neural Networks Oct 3, 2016 3:00:00 AM / by Alex Black and Vyacheslav Kokorin Tweet inShare27   This pos…
In the last chapter we learned that deep neural networks are often much harder to train than shallow neural networks. That's unfortunate, since we have good reason to believe that if we could train deep nets they'd be much more powerful than shallow…
Deep Learning 方向的部分 Paper ,自用.一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 2 Statistical Language Models Based on Neural Networks Mikolov的博士论文,主要将他在RNN用在语言模型上的工作进行串联 3 Extensions of Recurrent Neural Network Language Model 开山之…
转载 http://hi.baidu.com/chb_seaok/item/6307c0d0363170e73cc2cb65 个人阅读的Deep Learning方向的paper整理,分了几部分吧,但有些部分是有交叉或者内容重叠,也不必纠结于这属于DNN还是CNN之类,个人只是大致分了个类.目前只整理了部分,剩余部分还会持续更新. 一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 2 Statistical…
Deep Learning Methods for Vision CVPR 2012 Tutorial  9:00am-5:30pm, Sunday June 17th, Ballroom D (Full day) Rob Fergus (NYU), Honglak Lee (Michigan), Marc'Aurelio Ranzato (Google) Ruslan Salakhutdinov(Toronto), Graham Taylor(Guelph), Kai Yu(Baidu)  O…
Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snippets about deep learning in applied settings. Including trained models and simple methods that can be used out of the box. Mainly focusing on Convoluti…
The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near July 27, 2015July 27, 2015 Tim Dettmers Deep Learning, NeuroscienceDeep Learning, dendritic spikes, high performance computing, neuroscience, singula…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
A Statistical View of Deep Learning (III): Memory and Kernels Memory, the ways in which we remember and recall past experiences and data to reason about future events, is a term used frequently in current literature. All models in machine learning co…
Introduction Deep learning is a recent trend in machine learning that models highly non-linear representations of data. In the past years, deep learning has gained a tremendous momentum and prevalence for a variety of applications (Wikipedia 2016a).…
[原文链接] Background removal with deep learning   This post describes our work and research on the greenScreen.AI. We’ll be happy to hear thoughts and comments! Intro Throughout the last few years in machine learning, I’ve always wanted to build real ma…
深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像.声音和文本.深度学习是无监督学习的一种. 深度学习的概念源于人工神经网络的研究.含多隐层的多层感知器就是一种深度学习结构.深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示. 深度学习的概念由Hinton等人于2006年提出.基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器…
from:http://farmingyard.diandian.com/post/2013-04-07/40049536511 来源:十一城 http://elevencitys.com/?p=1854 深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本.深度学习是无监督学习的一种. 深度学习的概念源于人工神经网络的研究.含多隐层的多层感知器就是一种深度学习结构.深度学习通过组合低层特征形成更加抽象的高层表示…
A Survey of Visual Attention Mechanisms in Deep Learning 2019-12-11 15:51:59 Source: Deep Learning on Medium Visual Glimpses and Reinforcement Learning The first paper we will look at is from Google’s DeepMind team: “ Recurrent Models of Visual Atten…
Research Guide for Video Frame Interpolation with Deep Learning This blog is from: https://heartbeat.fritz.ai/research-guide-for-video-frame-interpolation-with-deep-learning-519ab2eb3dda In this research guide, we’ll look at deep learning papers aime…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的.本文的实验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Ne…
深度学习在最近十来年特别火,几乎是带动AI浪潮的最大贡献者.互联网视频在最近几年也特别火,短视频.视频直播等各种新型UGC模式牢牢抓住了用户的消费心里,成为互联网吸金的又一利器.当这两个火碰在一起,会产生什么样的化学反应呢? 不说具体的技术,先上一张福利图,该图展示了机器对一个视频的认知效果.其总红色的字表示objects, 蓝色的字表示scenes,绿色的字表示activities. 图1 人工智能在视频上的应用主要一个课题是视频理解,努力解决“语义鸿沟”的问题,其中包括了:     · 视频…
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning b…
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep learning:五十一(CNN的反向求导及练习) Deep Learning 学习随记(八)CNN(Convolutional neural network)理解 ufldl学习笔记与编程作业:Convolutional Neural Network(卷积神经网络) [UFLDL]Exercise: Co…