首先需要搞定tensorflow c++库,搜了一遍没有找到现成的包,于是下载tensorflow的源码开始编译: tensorflow的contrib中有一个makefile项目,极大的简化的接下来的工作: 按照tensorflow makefile的说明文档,开始做c++库的编译: 1. 下载依赖 在tensorflow的项目顶层运行: tensorflow/contrib/makefile/download_dependencies.sh 东西会下载到tensorflow/contrib/…
数据集 DNN 依赖于大量的数据.可以收集或生成数据,也可以使用可用的标准数据集.TensorFlow 支持三种主要的读取数据的方法,可以在不同的数据集中使用:本教程中用来训练建立模型的一些数据集介绍如下: MNIST:这是最大的手写数字(0-9)数据库.它由 60000 个示例的训练集和 10000 个示例的测试集组成.该数据集存放在 Yann LeCun 的主页(http://yann.lecun.com/exdb/mnist/)中.这个数据集已经包含在tensorflow.examples…
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变化后的图片大小,0, 0表示dx和dy, cv2.INTER_LINEAR表示插值的方式为线性插值 2.image.get_shape[1:4].num_elements() 获得最后三个维度的大小之和 参数说明:image表示输入的图片 3. saver.save(sess, path, glob…
写在前面 我之前使用的LSTM计算单元是根据其前向传播的计算公式手动实现的,这两天想要和TensorFlow自带的tf.nn.rnn_cell.BasicLSTMCell()比较一下,看看哪个训练速度快一些.在使用tf.nn.rnn_cell.BasicLSTMCell()进行建模的时候,遇到了模型保存.加载的问题. 查找了一些博主的经验,再加上自己摸索,在这里做个笔记,总结经验.其中关键要素有以下3点: 1.需要保存哪些变量(tensor),就要给哪些变量取名字(即name='XXXXX').…
本文地址:https://www.cnblogs.com/tujia/p/13862360.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tensorflow开发基本流程 [2]TensorFlow光速入门-数据预处理(得到数据集) [3]TensorFlow光速入门-训练及评估 [4]TensorFlow光速入门-保存模型及加载模型并使用 [5]TensorFlow光速入门-图片分类完整代码 [6]TensorFlow光速入门-python模…
用pytorch进行文本分类,数据集为keras内置的imdb影评数据(二分类),代码包含六个部分(详见代码) 使用环境: pytorch:1.1.0 cuda:10.0 gpu:RTX2070 (1)导入相应的库.定义常量以及加载imdb数据 (2)使用DataLoader加载数据 (3)定义LSTM模型用于文本二分类 (4)定义训练函数和测试函数 (5)开始模型的训练(并保存最优模型权重),训练较快,2min左右 (6)加载模型权重并测试…
# The tf.train.Saver对象不仅保存变量到checkpoint文件 # 它也恢复变量,当你恢复变量的时候,你就不必须要提前初始化他们 # 列如如下的代码片段解释了如何去调用tf.train.Saver.restore方法,来从checkpoint文件中恢复变量 import tensorflow as tf tf.reset_default_graph() # Create some variables v1 = tf.get_variable("v1", shape=…
在xcode中使用mlmodel模型,之前说的最简单的方法是将模型拖进工程中即可,xcode会自动生成有关模型的前向预测接口,这种方式非常简单,但是更新模型就很不方便. 今天说下另外一种通过URL加载mlmodel的方式.具体可以查阅apple开发者官方文档 https://developer.apple.com/documentation/coreml/mlmodel: 流程如下: 1.提供mlmodel的文件所在路径model_path NSString *model_path = "pat…
技术背景 近几年在机器学习和传统搜索算法的结合中,逐渐发展出了一种Search To Optimization的思维,旨在通过构造一个特定的机器学习模型,来替代传统算法中的搜索过程,进而加速经典图论等问题的求解.那么这里面就涉及到一个非常关键的工程步骤:把机器学习中训练出来的模型保存成一个文件或者数据库,使得其他人可以重复的使用这个已经训练出来的模型.甚至是可以发布在云端,通过API接口进行调用.那么本文的内容就是介绍给予MindSpore的模型保存与加载,官方文档可以参考这个链接. 保存模型…
旷视MegEngine数据加载与处理 在网络训练与测试中,数据的加载和预处理往往会耗费大量的精力. MegEngine 提供了一系列接口来规范化这些处理工作. 利用 Dataset 封装一个数据集 数据集是一组数据的集合,例如 MNIST.Cifar10等图像数据集. Dataset 是 MegEngine 中表示数据集的抽象类.自定义的数据集类应该继承 Dataset 并重写下列方法: __init__() :一般在其中实现读取数据源文件的功能.也可以添加任何其它的必要功能: __getite…