http://www.themtank.org/a-year-in-computer-vision 部分中文翻译汇总:https://blog.csdn.net/chengyq116/article/details/78660521 The M Tank 编辑了一份报告<A Year in Computer Vision>,记录了 2016 至 2017 年计算机视觉领域的研究成果,对开发者和研究人员来说是不可多得的一份详细材料.虽然该文已经过去一年多的时间了,但是考虑到研究成果由理论到落地的…
计算机视觉中的边缘检测   边缘检测是计算机视觉中最重要的概念之一.这是一个很直观的概念,在一个图像上运行图像检测应该只输出边缘,与素描比较相似.我的目标不仅是清晰地解释边缘检测是怎样工作的,同时也提供一个新而又容易的方法只需要最小工作来明显地提高边缘检测. 通过获得这些边缘,许多计算机算法才得以有可能实现,因为在一个场景中边缘包含着绝大部分(至少很多)的信息. 举个例子,我们都记得 Windows XP 的那个绿色小山坡和蓝色天空的背景. 当我们的大脑试图去理解这个场景时,我们知道这是草地,看…
本文把自己理解的图像存储格式总结一下. 计算机中的数据,都是二进制的,所以图片也不例外. 这是opencv文档的描述,具体在代码里面,使用矩阵来进行存储. 类似下图是(BGR格式): 图片的最小单位是像素,这里是BGR(通常我们说的blud.green.red的表示法)表示每个像素对应的值(这里BGR的混合,可以得到我们可见光的所有值). 如果是单通道(例如:灰度化之后的图像,这里就只有一列) 参考可见光光谱: 因为物体都是原子组成,原子都在运动,运动会产生光波,不同的物体生成的光波不一样,人类…
Computer Vision的尴尬---by林达华 Computer Vision是AI的一个非常活跃的领域,每年大会小会不断,发表的文章数以千计(单是CVPR每年就录取300多,各种二流会议每年的文章更可谓不计其数),新模型新算法新应用层出不穷.可是,浮华背后,根基何在?对于Vision,虽无大成,但涉猎数年,也有管窥之见.Vision所探索的是一个非常复杂的世界,对于这样的世界如何建模,如何分析,却一直没有受普遍承认的理论体系.大部分的研究工作,循守着几种模式:o    从上游学科(比如立…
Capel, David, and Andrew Zisserman. "Computer vision applied to super resolution." Signal Processing Magazine, IEEE 20, no. 3 (2003): 75-86. 简介 超分辨率重建的目的是使用一组低分辨率的图像来估计一副高分辨率图像.重建主要通过两个步骤来完成:配准低分辨率的图片组到一个公共的坐标系,然后使用图像的生成模型(generative image model…
此文主要记录我在18年寒假期间,收集Avrix论文的总结 寒假生活题外   在寒假期间,爸妈每天让我每天跟着他们6点起床,一起吃早点收拾,每天7点也就都收拾差不多.   早晨的时光是人最清醒的时刻,而且到十点左右才开始帮忙做中午饭,中间这么大把的时光,我就来做做自己喜欢的事情.小外甥女也回来,但她每天只有10点起床后才跟我玩,真希望她能早起背背古诗文. 概述   整个项目由数据采集(Python),数据存储(Mysql),数据可视化(C#)组成.   数据采集主要负责从网络上,获取Avrix的论…
Graph Cut and Its Application in Computer Vision 原文出处: http://lincccc.blogspot.tw/2011/04/graph-cut-and-its-application-in.html 现在好像需要代理才能访问了... 网络流算法最初用于解决流网络的优化问题,比如水管网络.通信传输和城市的车流等.Graph cut作为其中一类最常见的算法,用于求解流网络的最小割,即寻找一个总容量最小的边集合,去掉这个集合中的所有边将阻断这个网…
中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS for Robotics Programming Second Edition学习笔记(五) indigo computer vision FireWire IEEE1394 cameras无USB cameras--sudo apt-get install ros-indigo-usb-cam--roslaunch chapt…
转载链接:https://www.jianshu.com/p/4e5b3e652639 Szegedy在2015年发表了论文Rethinking the Inception Architecture for Computer Vision,该论文对之前的Inception结构提出了多种优化方法,来达到尽可能高效的利用计算资源的目的.作者认为随意增大Inception的复杂度,后果就是Inception的错误率很容易飙升,还会成倍的增加计算量,所以必须按照一套合理的规则来优化Inception结构…
这一篇论文很不错,也很有价值;它重新思考了googLeNet的网络结构--Inception architecture,在此基础上提出了新的改进方法; 文章的一个主导目的就是:充分有效地利用computation; 第一部分: 文章提出了四个principles: 原则1:设计网络的时候需要避免 representational bottlenecks; 什么意思呢? 文章中说: 层与层之间进行 information 传递时,要避免这个过程中的数据的extreme compression,也就…