Spark运行模式:cluster与client】的更多相关文章

上一篇说到Spark的yarn client运行模式,它与yarn cluster模式的主要区别就是前者Driver是运行在客户端,后者Driver是运行在yarn集群中.yarn client模式一般用在交互式场景中,比如spark shell, spark sql等程序,但是该模式下运行在客户端的Driver与Yarn集群有大量的网络交互,如果客户端与集群之间的网络不是很好,可能会导致性能问题.因此一般在生产环境中,大部分还是采用yarn cluster模式运行spark程序. 下面具体还是…
Spark运行模式有Local,STANDALONE,YARN,MESOS,KUBERNETES这5种,其中最为常见的是YARN运行模式,它又可分为Client模式和Cluster模式.这里以Spark自带的SparkPi来说明这些运行模式. 本文作为第一篇,先结合SparkPi程序来说明Yarn Client方式的流程. 以下是Spark中examples下的SparkPi程序. // scalastyle:off println package org.apache.spark.exampl…
前两篇介绍了Spark的yarn client和yarn cluster模式,本篇继续介绍Spark的STANDALONE模式和Local模式. 下面具体还是用计算PI的程序来说明,examples中该程序有三个版本,分别采用Scala.Python和Java语言编写.本次用Java程序JavaSparkPi做说明. package org.apache.spark.examples; import org.apache.spark.api.java.JavaRDD; import org.ap…
Spark运行模式 Spark 有很多种模式,最简单就是单机本地模式,还有单机伪分布式模式,复杂的则运行在集群中,目前能很好的运行在 Yarn和 Mesos 中,当然 Spark 还有自带的 Standalone 模式,对于大多数情况 Standalone 模式就足够了,如果企业已经有 Yarn 或者 Mesos 环境,也是很方便部署的. local(本地模式):常用于本地开发测试,本地还分为local单线程和local-cluster多线程; standalone(集群模式):典型的Mater…
Spark运行模式 Spark 有很多种模式,最简单就是单机本地模式,还有单机伪分布式模式,复杂的则运行在集群中,目前能很好的运行在 Yarn和 Mesos 中,当然 Spark 还有自带的 Standalone 模式,对于大多数情况 Standalone 模式就足够了,如果企业已经有 Yarn 或者 Mesos 环境,也是很方便部署的. local(本地模式):常用于本地开发测试,本地还分为local单线程和local-cluster多线程; standalone(集群模式):典型的Mater…
上节中简单的介绍了Spark的一些概念还有Spark生态圈的一些情况,这里主要是介绍Spark运行模式与Spark Standalone模式的部署: Spark运行模式 在Spark中存在着多种运行模式,可使用本地模式运行.可使用伪分布式模式运行.使用分布式模式也存在多种模式如:Spark Mesos模式.Spark YARN模式: Spark Mesos模式:官方推荐模式,通用集群管理,有两种调度模式:粗粒度模式(Coarse-grained Mode)与细粒度模式(Fine-grained…
一.Spark运行模式 Spark有以下四种运行模式: local:本地单进程模式,用于本地开发测试Spark代码; standalone:分布式集群模式,Master-Worker架构,Master负责调度,Worker负责具体Task的执行; 与MapReduce1.0框架类似,Spark框架本身也自带了完整的资源调度管理服务,可以独立部署到一个集群中,而不需要依赖其他系统来为其提供资源管理调度服务.在架构的设计上,Spark与MapReduce1.0完全一致,都是由一个Master和若干个…
Spark编程模型的回顾 spark编程模型几大要素 RDD的五大特征 Application program的组成 运行流程概述 具体流程(以standalone模式为例) 任务调度 DAGScheduler TaskScheduler DAGScheduler ScheduleBacked 详细过程 实例解析 Spark运行模式简介…
终于说到了体现分布式计算价值的地方了! 和单机运行的模式不同,这里必须在执行应用程序前,先启动Spark的Master和Worker守护进程.不用启动Hadoop服务,除非你用到了HDFS的内容. 启动的进程如下:(其他非Master节点上只会有Worker进程) 这种运行模式,可以使用Spark的8080 web ui来观察资源和应用程序的执行情况了.   可以看到,当前环境下,我启动了8个worker进程,每个可使用的core是2个,内存没有限制.言归正传,用如下命令提交应用程序: 代表着会…
这种运行模式和"Spark自带Cluster Manager的Standalone Client模式(集群)"还是有很大的区别的.使用如下命令执行应用程序(前提是已经启动了spark的Master.Worker守护进程)不用启动Hadoop服务,除非你用到了HDFS的内容. 各节点启动的JVM进程情况如下: master节点上的进程 提交应用程序的客户端上的进程 某worker节点上的进程 客户端的SparkSubmit进程会在应用程序提交给集群之后就退出(区别1) Master会在集…