Why ML stategy 怎么提高预测准确度?有了stategy就知道从哪些地方入手,而不至于找错方向做无用功. Satisficing and Optimizing metric 上图中,running time <= 100ms 就是satisficing,accuracy 就是 optimazing. Dev set and test set should be from same distribution. 传统的traing set/ dev set / test set 比例是6…
Lesson 3 Structuring Machine Learning Projects 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第三门课程的课程笔记. 参考了其他人的笔记继续归纳的. 迁移学习 (Transfer learning) 深度学习中,最强大的理念之一就是,有的时候神经网络可以从一个任务中习得知识,并将这些知识应用到另一个独立的任务中. 假如说我们已经训练好一个图像识别神经网络,如猫狗识别器之类的,然后我们让它适应或者说迁移到放射科诊断,类似 X 射线扫…
Decision Boundaries for Deep Learning and other Machine Learning classifiers H2O, one of the leading deep learning framework in python, is now available in R. We will show how to get started with H2O, its working, plotting of decision boundaries and…
About this Course You will learn how to build a successful machine learning project. If you aspire to be a technical leader in AI, and know how to set direction for your team's work, this course will show you how. Much of this content has never been…
Learning Goals Understand why Machine Learning strategy is important Apply satisficing and optimizing metrics to set up your goal for ML projects Choose a correct train/dev/test split of your dataset Understand how to define human-level performance U…
[]To help you practice strategies for machine learning, the following exercise will present an in-depth scenario and ask how you would act. Consider airplane pilots who’s training involves time spent in flight simulators. These flight simulators acce…
1 Machine Learning strategy 1.1 为什么有机器学习调节策略 当你的机器学习系统的性能不佳时,你会想到许多改进的方法.但是选择错误的方向进行改进,会使你花费大量的时间,但是无法得到想要的结果. 这一部分吴恩达老师将讲解一些他在国王总结的经验教训,改进策略,避免南辕北辙.而且现在深度学习的的策略变化日新月异. 1.2 Orthogonalization(正交化) 不耦合的.举例了控制电视屏幕,汽车. 1.2.1 chain of assumption in ML 下面这…
Week1 Bird recognition in the city of Peacetopia (case study)( 和平之城中的鸟类识别(案例研究)) 1.Problem Statement This example is adapted from a real production application, but with details disguised to protect confidentiality. (问题陈述:这个例子来源于实际项目,但是为了保护机密性,我们会对细节…
第二周:机器学习策略(2)(ML Strategy(2)) 误差分析(Carrying out error analysis) 你好,欢迎回来,如果你希望让学习算法能够胜任人类能做的任务,但你的学习算法还没有达到人类的表现,那么人工检查一下你的算法犯的错误也许可以让你了解接下来应该做什么.这个过程称为错误分析,我们从一个例子开始讲吧. 假设你正在调试猫分类器,然后你取得了 90% 准确率,相当于 10% 错误,,在你的开发集上做到这样,这离你希望的目标还有很远.也许你的队员看了一下算法分类出错的…
正交化 Orthogonalization单一评价指标保证训练.验证.测试的数据分布一致不同的错误错误分析数据分布不一致迁移学习 transfer learning多任务学习 Multi-task learning端到端的深度学习系统好处坏处Reference 这门课不是具体的技术,而是帮助你决定现在最有价值做的应该是什么 正交化 Orthogonalization 简单的说就是有些调整是不相互影响的,所以可以分开做 单一评价指标 一般来说有一个单一数值作为评价指标会更好 如果存在多个指标,一般…
一.Training of a Single-Layer Neural Network 1 Delta Rule Consider a single-layer neural network, as shown in Figure 2-11. In the figure, d i is the correct output of the output node i. Long story short, the delta rule adjusts the weight as the follow…
[中文翻译] 为了帮助您练习机器学习的策略, 在本周我们将介绍另一个场景, 并询问您将如何行动.我们认为, 这个工作在一个机器学习项目的 "模拟器" 将给一个任务, 告诉你一个机器学习项目像什么! 你受雇于一自动驾驶汽车公司.您负责检测图像中的路标 (停车标志.行人过路标志.建筑前方标志) 和交通信号灯 (红色和绿色灯).目标是识别这些对象中的哪一个出现在每个图像中.举例来说, 上述图则载有行人过路标志及红色交通灯. 您的10万标签图像是使用你的车的前置摄像头拍的.这也是你最关心的关于…
Learning Goals Understand what multi-task learning and transfer learning are Recognize bias, variance and data-mismatch by looking at the performances of your algorithm on train/dev/test sets [中文翻译] 学习目标 了解什么是多任务学习和迁移学习 通过在训练/开发/测试集上查看算法的性能, 识别偏差.方差和…
一.改进模型的几个方法 Collect more data Collect more diverse training set Train algorithm longer with gradient descent Try Adam instead of gradient descent Try bigger network Try dropout Add \(L_2\) regularization Network architecture Activation functions hidd…
第一周:机器学习策略(1)(ML Strategy(1)) 为什么是ML策略?(Why ML Strategy) 大家好,欢迎收听本课,如何构建你的机器学习项目也就是说机器学习的策略.我希望通过这门课程你们能够学到如何更快速高效地优化你的机器学习系统.那么,什么是机器学习策略呢? 我们从一个启发性的例子开始讲,假设你正在调试你的猫分类器,经过一段时间的调整,你的系统达到了 90% 准确率,但对你的应用程序来说还不够好. 你可能有很多想法去改善你的系统,比如,你可能想我们去收集更多的训练数据吧.或…
第一周 机器学习(ML)策略(1)(ML strategy(1)) 1.1 为什么是 ML 策略?(Why ML Strategy?) 希望在这门课程中,可以教给一些策略,一些分析机器学习问题的方法,可以指引朝着最有希望的方向前进.这门课中,我会分享我在搭建和部署大量深度学习产品时学到的经验和教训.比如说,很多大学深度学习课程很少提到这些策略.事实上,机器学习策略在深度学习的时代也在变化,因为现在对于深度学习算法来说能够做到的事情,比上一代机器学习算法大不一样. 1.2 正交化(Orthogon…
1. active learning Active learning 是一种特殊形式的半监督机器学习方法,该方法允许交互式地询问用户(或者其他形式的信息源 information source)以获取对新的数据样本的理想输出. Active learning 提供的这种交互机制尤其适用于 unlabeled data 有很多,且手工标注的代价十分高昂的场合.显然这种交互式地向用户询问以获取label,使得原始非监督问题变成了一种迭代式的监督学习(iterative supervised lear…
问题情形 使用Python SDK在连接到数据库后,连接数据库获取数据成功,但是在Pandas中用 to_sql 反写会数据库时候报错.错误信息为:ProgrammingError: ('42000', "[42000] [Microsoft][SQL Server Native Client 11.0][SQL Server]Invalid object name 'sqlite_master'. (104014) (SQLExecDirectW)"). 出错代码片段: import…
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
Common Pitfalls In Machine Learning Projects In a recent presentation, Ben Hamner described the common pitfalls in machine learning projects he and his colleagues have observed during competitions on Kaggle. The talk was titled "Machine Learning Grem…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? Learning Machine Learning Learning About Computer Science Educational Resources Advice Artificial Intelligence How-to Question Learning New Things Lea…
Awesome系列 Awesome Machine Learning Awesome Deep Learning Awesome TensorFlow Awesome TensorFlow Implementations Awesome Torch Awesome Computer Vision Awesome Deep Vision Awesome RNN Awesome NLP Awesome AI Awesome Deep Learning Papers Awesome 2vec Deep…
Complete Small Focused Projects and Demonstrate Your Skills (完成小型针对性机器学习项目,证明你的能力) A portfolio is typically used by designers and artists to show examples of prior work to prospective clients and employers. Design, art and photography are examples wh…
Machine Learning Crash Course  |  Google Developers https://developers.google.com/machine-learning/crash-course/ Google's fast-paced, practical introduction to machine learning ML Concepts Introduction to Machine Learning As you'll discover, machine…
Getting started with machine learning in Python Machine learning is a field that uses algorithms to learn from data and make predictions. Practically, this means that we can feed data into an algorithm, and use it to make predictions about what might…
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics for machine learning? Promoted by Time Doctor Software for productivity tracking. Time tracking and productivity improvement software with screenshots…
5 Techniques To Understand Machine Learning Algorithms Without the Background in Mathematics Where does theory fit into a top-down approach to studying machine learning? In the traditional approach to teaching machine learning, theory comes first req…
About this Course Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly i…
本文汇编了一些机器学习领域的框架.库以及软件(按编程语言排序). 1. C++ 1.1 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C, Python, Java 以及 MATLAB接口,并支持Windows, Linux, Android and Mac OS操作系统. 1.2 机器学习 MLPack DLib ecogg shark 2. Closure Closure Toolbox—Clojure语言库与工具的分类目录 3…