题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最底层必有一个是满高度的,其他的任意. 所以直接的递推也不好想. (以下所述都是n元树) 于是可以令f[d]为深度<=d的树的个数,那么深度为d的就是f[d]-f[d-1] 对于深度<=d的又该怎么处理呢? 考虑第一层的n个点(根为0层),每个点都要底下连子树,深度为0~i-1,方案数即f[d-1]…
挺好想的,就是一直没调过,我也不知道哪儿的错,对拍也拍了,因为数据范围小,都快手动对拍了也不知道 哪儿错了.... 我们定义w[i]代表深度<=i的严格n元树的个数 那么最后w[d]-w[d-1]就是答案 那么对于w[i],我们由w[i-1]递推来, 我们考虑新加一个根节点,然后根节点有n个子节点,每个子节点都可以建一颗深度<=i-1的树,那么每个 子节点都有w[i-1]种选法,那么n个子节点就有w[i-1]^n选法,再加上都不选,就是深度为0的情况 那么w[i]:=(w[i-1]^n)+1:…
题解:用a[i]表<=i时有几种树满足度数要求,那么这样就可以递归了,a[i]=a[i-1]^n+1.n个节点每个有a[i-1]种情况,那么将其相乘,最后加上1,因为深度为0也算一种.那么答案就是a[n]-a[n-1].然后就是高精度的问题了,发现很久没有现码高精度没手感了,连高进度加法进位都出了些问题,需要特别注意. #include <cstdio> #include <cstring> #include <algorithm> using namespace…
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 762  Solved: 387[Submit][Status] Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d(根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严格2元树有三个,如下图: 给出n, d,编程数出深度为d的n元树数目. Input 仅包含两个整数…
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1899  Solved: 954[Submit][Status][Discuss] Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d(根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严格2元树有三个,如下图: 给出n, d,编程数出深度为d的n元树数目. Inp…
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1250  Solved: 621[Submit][Status][Discuss] Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d(根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严格2元树有三个,如下图: 给出n, d,编程数出深度为d的n元树数目. Inp…
Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严格2元树有三个,如下图: 给出n, d,编程数出深度为d的n元树数目. Input 仅包含两个整数n, d( 0   <   n   <   =   32,   0  < =   d  < = 16) Output 仅包含一个数,即深度为d的n元树的数目. Sample Input […
Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严格2元树有三个,如下图: 给出n, d,编程数出深度为d的n元树数目. Input 仅包含两个整数n, d( 0   <   n   <   =   32,   0  < =   d  < = 16) Output 仅包含一个数,即深度为d的n元树的数目. Sample Input […
[BZOJ1089][SCOI2003]严格n元树(高精度,动态规划) 题面 BZOJ 洛谷 题解 设\(f[i]\)表示深度为\(i\)的\(n\)元树个数.然后我们每次加入一个根节点,然后枚举它的子树的深度乘起来就好了.但是这样不好做,我们设\(f[i]\)表示深度至多为\(i\)的\(n\)元树个数,那么显然,\(f[i]=f[i-1]^n+1\),加一的原因是存在只有一个根节点的情况.最终的答案直接容斥一下就变成了\(f[d]-f[d-1]\).写个高精度就好了,反正位数不多,乘法直接暴…
SCOI2003 严格N元树 Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严格2元树有三个,如下图: 给出n, d,编程数出深度为d的n元树数目. Input 仅包含两个整数n, d( 0 < n < = 32, 0 < = d < = 16) Output 仅包含一个数,即深度为d的n元树的数目. Sample Input [样…