0.交叉验证 交叉验证的基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set or test set),首先用训练集对分类器进行训练,再利用验证集来测试训练得到的模型(model),以此来做为评价分类器的性能指标. 交叉验证用在数据不是很充足的时候.比如在我日常项目里面,对于普通适中问题,如果数据样本量小于一万条,我们就会采用交叉验证来训练优化选择模型.如果样本大于一万条的话,我们一般随机的把数据分…
Numpy实现K折交叉验证的数据划分 本实例使用Numpy的数组切片语法,实现了K折交叉验证的数据划分 背景:K折交叉验证 为什么需要这个?在机器学习中,因为如下原因,使用K折交叉验证能更好评估模型效果: 样本量不充足,划分了训练集和测试集后,训练数据更少: 训练集和测试集的不同划分,可能会导致不同的模型性能结果: K折验证是什么K折验证(K-fold validtion)将数据划分为大小相同的K个分区.对每个分区i,在剩余的K-1个分区上训练模型,然后在分区i上评估模型.最终分数等于K个分数的…
案例背景 银行评判用户的信用考量规避信用卡诈骗 ▒ 数据 数据共有 31 个特征, 为了安全起见数据已经向了模糊化处理无法读出真实信息目标 其中数据中的 class 特征标识为是否正常用户 (0 代表正常, 1 代表异常) ▒ 目标 本质依旧是一个分类问题, 0/1 的问题判断是否为信用卡诈骗用户 而在数据中 class 已经进行标识, 而且这次的样本数据的两项结果是极度的不均衡 既正常用户的样本数量是远远大于异常数据的. 不均衡的数据处理方式可以进行 下采样, 或者上采样 ▨ 下采样 -  对…
1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 1.2 距离公式 两个样本的距离可以通过如下公式计算,又叫欧式距离. 简单理解这个算法: 这个算法是用来给特征值分类的,是属于有监督学习的领域,根据不断计算特征值和有目标值的特征值的距离来判断某个样本是否属于某个目标值. 可以理解为根据你的邻居来判断你属于哪个类别. 1.3 API sklea…
注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念,经过一番苦思冥想后终于有了我自己的理解. 0. 正则化(Regularization ) 前面使用多项式回归,如果多项式最高次项比较大,模型就容易出现过拟合.正则化是一种常见的防止过拟合的方法,一般原理是在代价函数后面加上一个对参数的约束项,这个约束项被叫做正则化项(regularizer).在线…
在上一篇关于Python中的线性回归的文章之后,我想再写一篇关于训练测试分割和交叉验证的文章.在数据科学和数据分析领域中,这两个概念经常被用作防止或最小化过度拟合的工具.我会解释当使用统计模型时,通常将模型拟合在训练集上,以便对未被训练的数据进行预测. 在统计学和机器学习领域中,我们通常把数据分成两个子集:训练数据和测试数据,并且把模型拟合到训练数据上,以便对测试数据进行预测.当做到这一点时,可能会发生两种情况:模型的过度拟合或欠拟合.我们不希望出现这两种情况,因为这会影响模型的可预测性.我们有…
代码实现(基于逻辑回归算法): # -*- coding: utf-8 -*- """ Created on Sat Sep 1 11:54:48 2018 @author: zhen 交叉验证 """ import numpy as np from sklearn import datasets from sklearn.linear_model import LogisticRegression from sklearn.model_sele…
1.介绍 Ridge 回归通过对系数的大小施加惩罚来解决 普通最小二乘法 的一些问题. 岭系数最小化的是带罚项的残差平方和, 其中,α≥0α≥0 是控制系数收缩量的复杂性参数: αα 的值越大,收缩量越大,这样系数对共线性的鲁棒性也更强. 2.参数 alpha:{float,array-like},shape(n_targets) 正则化强度; 必须是正浮点数. 正则化改善了问题的条件并减少了估计的方差. 较大的值指定较强的正则化. Alpha对应于其他线性模型(如Logistic回归或Line…
机器学习之五 正则化的线性回归-岭回归与Lasso回归 注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念,经过一番苦思冥想后终于有了我自己的理解. 0. 正则化(Regularization ) 前面使用多项式回归,如果多项式最高次项比较大,模型就容易出现过拟合.正则化是一种常见的防止过拟合的方法,一般原理是在代价函数后面加上一个对参数的约束项,…
转自 https://www.cnblogs.com/rainsoul/p/6373385.html 在以前的网络训练中,有关于验证集一直比较疑惑,在一些机器学习的教程中,都会提到,将数据集分为三部分,即训练集,验证集与测试集,但是由于工作中涉及到的都是神经网络的训练,大部分的情况是将数据集分为train以及test两部分,直接用train set进行网络的训练,test set进行accuracy的测试,最后在选取accuracy最高的迭代次数所对应的模型使用,一直延续的就是这样一个套路,对于…