「Log」2023.8.11 小记】的更多相关文章

原文:零元学Expression Blend 4 - Chapter 11 用实例了解布局容器系列-「Border」 将教大家以实做案例认识Blend 4 的布局容器,此章介绍的布局容器是Blend 4 里的专情王子-「Border」. ? ? 本系列将教大家以实做案例认识Blend 4 的布局容器,此章介绍的布局容器是Blend 4 里的专情王子-「Border」. ? ? 就是要让不会的新手都看的懂! ? <专情王子?查理B> Border是Blend里最简单的布局容器,可以使用Borde…
Link Aeon 显然字典序最大就是把最小的字母放在最后 Business [动态规划] 简单dp dp[i][j]dp[i][j]dp[i][j]表示到第iii天,当前有jjj块钱,最后返还的钱最多为多少 完全背包转移 Celebration Description 有一个环 ,求把它分成三段,使得每一段内无重复元素,且三段长度可以作为某个三角形的三边的方案数. 一个拆分方案可以看作一个三元组 (a,b,c)(a,b,c)(a,b,c),其中 0<a<b<c≤n0lt alt b l…
这次聊聊「日志」. 「日志」主要指系统或者软件留下的「记录」.出自表示「航海日志」的「logbook」. 经常听说「出现问题的时候,或者程序没有安装自己预期的来运行的时候,请看看日志!」. 确实,记录了系统和软件详细运行情况的「日志」是信息的宝库,通过日志来解决问题的事例也非常多. 但事实上,「无论如何也不会看日志」的用户也有很多.理由很简单,日志的信息量非常大,全部用眼睛来看的话是非常吃力的. 而且,英语写的日志也会让英文不好的人敬而远之. 虽说「要养成用眼睛来看日志的习惯」,但实行起来却非常…
本文由CrowHawk翻译,是Java GC调优的经典佳作. 本文翻译自Sangmin Lee发表在Cubrid上的"Become a Java GC Expert"系列文章的第三篇<How to Tune Java Garbage Collection>,本文的作者是韩国人,写在JDK 1.8发布之前,虽然有些地方有些许过时,但整体内容还是非常有价值的.译者此前也看到有人翻译了本文,发现其中有许多错漏生硬和语焉不详之处,因此决定自己翻译一份,供大家分享. 本文是"…
「NOI2018」情报中心 题目描述 C 国和D 国近年来战火纷飞. 最近,C 国成功地渗透进入了D 国的一个城市.这个城市可以抽象成一张有$n$ 个节点,节点之间由$n - 1$ 条双向的边连接的无向图,使得任意两个点之间可以互相到达,也就是说这张无向图实际上是一棵树. 经过侦查,C 国情报部部长GGB 惊讶地发现,这座看起来不起眼的城市竟然是D 国的军事中心.因此GGB 决定在这个城市内设立情报机构.情报专家TAC 在侦查后,安排了$m$ 种设立情报机构的方案.这些方案中,第$i$ 种方案是…
「NOI2018」冒泡排序 题目描述 最近,小S 对冒泡排序产生了浓厚的兴趣.为了问题简单,小 S 只研究对 1 到n 的排列的冒泡排序. 下面是对冒泡排序的算法描述. 输入:一个长度为n 的排列p[1...n] 输出:p 排序后的结果. for i = 1 to n do for j = 1 to n - 1 do if(p[j] > p[j + 1]) 交换p[j] 与p[j + 1] 的值 冒泡排序的交换次数被定义为交换过程的执行次数.可以证明交换次数的一个下 界是$\frac{1}{2}…
青蛙的约会 Language:Default 青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 133470 Accepted: 29610 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,…
本文由CrowHawk翻译,地址:如何优化Java GC「译」,是Java GC调优的经典佳作. Sangmin Lee发表在Cubrid上的”Become a Java GC Expert”系列文章的第三篇<How to Tune Java Garbage Collection>,本文的作者是韩国人,写在JDK 1.8发布之前,虽然有些地方有些许过时,但整体内容还是非常有价值的.译者此前也看到有人翻译了本文,发现其中有许多错漏生硬和语焉不详之处,因此决定自己翻译一份,供大家分享. 本文是“成…
题目传送门:LOJ #3184. 题意简述: 题目说得很清楚了. 题解: 首先需要了解「斐波那契数系」为何物. 按照题目中定义的斐波那契数列 \(F_n\),可以证明,每个非负整数 \(n\) 都能够以唯一方式用如下方式描述: \[n=\sum_{i=1}^{m}a_iF_i\] 其中 \(m\) 是正整数,\(a\) 是长度为 \(m\) 的 \(01\) 序列,\(a\) 中不存在相邻两项 \(a_i\) 与 \(a_{i+1}\) 同为 \(1\). 例如,当 \(m=5\) 时,有: \…
LOJ#3090. 「BJOI2019」勘破神机 为了这题我去学习了一下BM算法.. 很容易发现这2的地方是\(F_{1} = 1,F_{2} = 2\)的斐波那契数列 3的地方是\(G_{1} = 3,G_{2} = 11\)其中下标表示长度的\(\frac{1}{2}\),可以得到\(G_{3} = 4G_{2} - G_{1}\) 然后我们列一波特征根方程,可以得到 \(m = 2\)时 $$ \left{\begin{matrix} x_{1} = \frac{1 + \sqrt{5}}…