http://blog.csdn.net/l281865263/article/details/50278745 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.内容大多来自Standford公开课machine lear…
讲授聚类算法的基本概念,算法的分类,层次聚类,K均值算法,EM算法,DBSCAN算法,OPTICS算法,mean shift算法,谱聚类算法,实际应用. 大纲: 聚类问题简介聚类算法的分类层次聚类算法的基本思想簇之间距离的定义k均值算法的基本思想k均值算法的流程k均值算法的实现细节问题实验EM算法简介Jensen不等式EM算法的原理推导收敛性证明 聚类算法是无监督学习的典型代表,前边讲过的数据降维算法是无监督学习的另外一种典型代表. 聚类问题简介: 聚类算法的概念第四讲机器学习的基本概念里边已经…
目录 第1讲 前言:本书讲什么:如何使用本书: 第2讲 初始SLAM:引子-小萝卜的例子:经典视觉SLAM框架:SLAM问题的数学表述:实践-编程基础: 第3讲 三维空间刚体运动 旋转矩阵:实践-Eigen:旋转向量和欧拉角:四元数:相似.仿射.射影变换:实践-Eigen几何模块:可视化演示: 第4讲 李群与李代数 李群李代数基础:指数与对数映射:李代数求导与扰动模型:实践-Sophus:相似变换群与李代数:小结: 第5讲 相机与图像 相机模型:图像:实践-图像的存取与访问:实践-拼接点云: 第…
逆向知识第十四讲,(C语言完结)结构体在汇编中的表现形式 一丶了解什么是结构体,以及计算结构体成员的对其值以及总大小(类也是这样算) 结构体的特性 1.结构体(struct)是由一系列具有相同类型或不同类型的数据构成的数据集合 2.在C语言中,结构体(struct)指的是一种数据结构,是C语言中聚合数据类型(aggregate data type)的一类. 3. 结构体可以被声明为变量.指针或数组等,用以实现较复杂的数据结构.结构体同时也是一些元素的集合,这些元素称为结构体的成员(member)…
  目前实验室做机器人,主要分三个方向,定位导航,建图,图像识别,之前做的也是做了下Qt上位机,后面又弄红外识别,因为这学期上课也没怎么花时间在项目,然后导师让我们确定一个方向来,便于以后发论文什么.上个礼拜看了些论文,感觉视觉slam方向还可以,图像识别毕竟不是计算机科班,可能真正要弄也很难有成果,slam也是最近才研究起来,也挺适合我们搞,需要一些高数.c++.ros等知识,学的东西也挺多的,但这样才能体现研究生的价值,不然本科生也能做,然后确定了这个研究方向,希望好好研究个一两年有所成就,…
下载<视觉SLAM十四讲:从理论到实践>源码:https://github.com/gaoxiang12/slambook 第二讲:初识SLAM 2.4.2 Hello SLAM(书本P27) 1.从github上下载源码,并解压 Ubuntu上,解压zip,先找到zip文件所在位置,然后运行下面代码,进行解压. unzip slambook-master.zip 解压后,找到ch2文件夹,在文件夹中找到helloSLAM.cpp文件 运行cpp文件 g++ helloSLAM.cpp 如未安…
0 讲座 (1)SLAM定义 对比雷达传感器和视觉传感器的优缺点(主要介绍视觉SLAM) 单目:不知道尺度信息 双目:知道尺度信息,但测量范围根据预定的基线相关 RGBD:知道深度信息,但是深度信息对距离也有要求 vSLAM(视觉SLAM) 摄像机(主要)+IMU+超声波避障传感器 2016年之后已经可以跑一点DEMO程序了(在刚体的和静态的环境下) 视觉SLAM的几个模块 传感器数据(图像数据采集点云) 视觉里程计(估计摄像机参数) 后端(对摄像机参数优化,因为摄像机误差累积跟IMU一样,因此…
0.引言 从六月末到八月初大概一个月时间一直在啃SLAM十四讲[1]这本书,这本书把SLAM中涉及的基本知识点都涵盖了,所以在这里做一个复习,对这本书自己学到的东西做一个梳理. 书本地址:http://www.broadview.com.cn/book/4938 书本代码:https://github.com/gaoxiang12/slambook 1.SLAM概述 SLAM:即时定位与地图构建(Simultaneous Localization and Mapping) 数学描述: 一个典型的…
Sophus截止目前有很多版本,其中大体分为两类,一种是用模板实现的方法,一种是用非模板类实现的,SLAM十四讲中使用的是非模板类库,clone Sophus: git clone http://github.com/strasdat/Sophus.git 对于非模板类库使用以下版本: git checkout a621ff 版本…
目录 一 视觉SLAM中的传感器 二 经典视觉SLAM框架 三 SLAM问题的数学表述 注:原创不易,转载请务必注明原作者和出处,感谢支持! 本讲主要内容: (1) 视觉SLAM中的传感器 (2) 经典视觉SLAM框架 (3) SLAM问题的数学表述 一 视觉SLAM中的传感器 想象一个在室内的移动机器人在自由地探索室内的环境,那么定位与建图可以直观地理解成: (1) 我在什么地方?--定位 (2) 周围环境是怎样的?--建图 而要完成定位和建图则需要各种传感器的支持.传感器一般可以分为两类,一…
目录 一 视觉SLAM 注:原创不易,转载请务必注明原作者和出处,感谢支持! 一 视觉SLAM 什么是视觉SLAM? SLAM是Simultaneous Localization and Mapping的缩写,中文译作"同时定位与地图构建".它是指搭载特定传感器的主体(比如扫地机器人,无人机,无人驾驶汽车等),在没有先验信息(比如扫地机器人没有得到房间的平面图数据)的情况下,于运动过程中建立环境的模型(比如扫地机器人边运动边建立房间的二维平面地图),同时估计自己的运动(比如此时此刻,扫…
版权声明:本文为博主原创文章,转载请注明出处: http://www.cnblogs.com/newneul/p/8545450.html 6.在PnP优化中,将第一个相机的观测也考虑进来,程序应如何书写?最后结果会有何变化?分析:实际上在PnP例子中,我们可以把第一帧作为世界坐标系,然后在优化过程中对于第一帧的RT我们不做优化,但是我们在添加节点时仍然要将第一帧在世界坐标系下的空间点加入到图中,并且与第一帧的位姿链接起来,然后将第一帧坐标系下的空间点与第二帧的位姿连接起来.下面是我们修改的部分…
版权声明:本文为博主原创文章,转载请注明出处:http://www.cnblogs.com/newneul/p/8544369.html  7.题目要求:在ICP程序中,将空间点也作为优化变量考虑进来,程序应该如何书写?最后结果会有何变化? 分析:在ICP例程中,本书使用的是自定义的一个继承BaseUnaryEdge的边,从例子中的EdgeProjectXYZRGBDPoseOnly这个类在linearizeOplus中写下了关于位姿节点的雅克比矩阵,里面也没有相机模型参数模型(没有涉及到相机内…
视觉SLAM十四讲:从理论到实践 第一版电子版PDF 链接:https://pan.baidu.com/s/1SuuSpavo_fj7xqTYtgHBfw提取码:lr4t 源码github链接:https://github.com/gaoxiang12/slambook.git 视觉SLAM十四讲:从理论到实践 第二版 电子版PDF链接:https://pan.baidu.com/s/1VsrueNrdqmzTvh-IlFBr9Q提取码:vfhe 源码gittee链接:https://gitee…
模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基于tensorflow来介绍和演示 请尊重原创,转载请注明来源网站www.shareditor.com以及原始链接地址 什么是tensorflow tensor意思是张量,flow是流. 张量原本是力学里的术语,表示弹性介质中各点应力状态.在数学中,张量表示的是一种广义的"数量",0阶张量…
讲授线性分类器,分类间隔,线性可分的支持向量机原问题与对偶问题,线性不可分的支持向量机原问题与对偶问题,核映射与核函数,多分类问题,libsvm的使用,实际应用 大纲: 支持向量机简介线性分类器分类间隔线性可分问题线性可分的对偶问题线性不可分问题线性不可分的对偶问题核映射与核函数 支持向量机简介: SVM是所有机器学习算法里边,对数学要求比较高的一种算法,主要难在拉格朗日对偶和KKT条件. 由Vapnik等人1995年提出,在出现后的20多年里它是最有影响力的机器学习算法之一,直到2012年它才…
参考文献:https://www.jianshu.com/p/5314834f9f8e # -*- coding: utf-8 -*- """ Created on Mon Jun 11 10:52:14 2018 @author: Administrator """ import numpy as np import matplotlib.pyplot as plt from sklearn import datasets iris = dat…
对这个的学习一直都在,感觉到了这本书很强大呀!!! ch2---安装ubuntu:安装kdevelop. ch3---安装eigen3---几何模块:安装Pangolin可视化. ch4---安装Sophus---eigen的扩展,包换李群.李代数. ch5---安装opencv 3.1.0 :安装 PCL点云库. ch6---安装ceres solver :安装G2o---图优化. ch7---特征点法 2d-2d:对极几何约束求解相机运动 3d-2d:PNP(Perspective-n-po…
一.小内存的分配基础 1.kmem_cache_alloc_node的作用 通过这段代码可以看出,它调用了kmem_cache_alloc_node函数,在task_struct的缓存区域task_struct分配了一块内存 static struct kmem_cache *task_struct_cachep; task_struct_cachep = kmem_cache_create("task_struct", arch_task_struct_size, align, SL…
一.上节回顾 上一节,我们学了网络性能优化的几个思路,我先带你简单复习一下. 在优化网络的性能时,你可以结合 Linux 系统的网络协议栈和网络收发流程,然后从应用程序.套接字.传输层.网络层再到链路层等每个层次,进行逐层优化.上一期我们主要学习了应用程序和套接字的优化思路,比如: 在应用程序中,主要优化 I/O 模型.工作模型以及应用层的网络协议: 在套接字层中,主要优化套接字的缓冲区大小. 今天,我们顺着 TCP/IP 网络模型,继续向下,看看如何从传输层.网络层以及链路层中,优化 Linu…
一.上节回顾 上一节,我带你学习了,如何使用 USE 法来监控系统的性能,先简单回顾一下. 系统监控的核心是资源的使用情况,这既包括 CPU.内存.磁盘.文件系统.网络等硬件资源,也包括文件描述符数.连接数.连接跟踪数等软件资源.而要描述这些资源瓶颈,最简单有效的方法就是 USE 法. USE 法把系统资源的性能指标,简化为了三个类别:使用率.饱和度以及错误数. 当这三者之中任一类别的指标过高时,都代表相对应的系统资源可能存在性能瓶颈. 基于 USE 法建立性能指标后,我们还需要通过一套完整的监…
一.引子 在前面的文章中,我不止一次地和你提到了 binlog,大家知道 binlog 可以用来归档,也可以用来做主备同步,但它的内容是什么样的呢?为什么备库执行了 binlog 就可以跟主库保持一致了呢?今天我就正式地和你介绍一下它. 毫不夸张地说,MySQL 能够成为现下最流行的开源数据库,binlog 功不可没. 在最开始,MySQL 是以容易学习和方便的高可用架构,被开发人员青睐的.而它的几乎所有的高可用架构,都直接依赖于 binlog.虽然这些高可用架构已经呈现出越来越复杂的趋势,但都…
一.引子 这是我们专栏的最后一篇答疑文章,今天我们来说说一些好问题. 在我看来,能够帮我们扩展一个逻辑的边界的问题,就是好问题.因为通过解决这样的问题,能够加深我们对这个逻辑的理解,或者帮我们关联到另外一个知识点,进而可以帮助我们建立起自己的知识网络. 在工作中会问好问题,是一个很重要的能力. 经过这段时间的学习,从评论区的问题我可以感觉出来,紧跟课程学习的同学,对 SQL 语句执行性能的感觉越来越好了,提出的问题也越来越细致和精准了. 接下来,我们就一起看看同学们在评论区提到的这些好问题.在和…
一.本节概述 在实际生产中,关于 join 语句使用的问题,一般会集中在以下两类: 1. 我们 DBA 不让使用 join,使用 join 有什么问题呢?2. 如果有两个大小不同的表做 join,应该用哪个表做驱动表呢? 今天这篇文章,我就先跟你说说 join 语句到底是怎么执行的,然后再来回答这两个问题.为了便于量化分析,我还是创建两个表 t1 和 t2 来和你说明. 可以看到,这两个表都有一个主键索引 id 和一个索引 a,字段 b 上无索引.存储过程idata() 往表 t2 里插入了 1…
一.上节回顾 上一节,我带你学习了 Linux 网络的基础原理.简单回顾一下,Linux 网络根据 TCP/IP模型,构建其网络协议栈.TCP/IP 模型由应用层.传输层.网络层.网络接口层等四层组成,这也是 Linux 网络栈最核心的构成部分. 应用程序通过套接字接口发送数据包时,先要在网络协议栈中从上到下逐层处理,然后才最终送到网卡发送出去:而接收数据包时,也要先经过网络栈从下到上的逐层处理,最后送到应用程序. 了解 Linux 网络的基本原理和收发流程后,你肯定迫不及待想知道,如何去观察网…
一.引子 在开发系统的时候,你可能经常需要计算一个表的行数,比如一个交易系统的所有变更记录总数.这时候你可能会想,一条 select count(*) from t 语句不就解决了吗? 但是,你会发现随着系统中记录数越来越多,这条语句执行得也会越来越慢.然后你可能就想了,MySQL 怎么这么笨啊,记个总数,每次要查的时候直接读出来,不就好了吗. 那么今天,我们就来聊聊 count(*) 语句到底是怎样实现的,以及 MySQL 为什么会这么实现.然后,我会再和你说说,如果应用中有这种频繁变更并需要…
小萝卜机器人的例子: 就像这种机器人,它的下面有一组轮子,脑袋上有相机(眼睛),为了让它能够探索一个房间,它需要知道: 1.我在哪——定位 2.周围环境怎么样——建图 定位和建图可以理解成感知的 "内外之分",一方面要明白自身的状态(位置),另一方面要了解周围的环境(地图).要完成这些工作,我们可以通过在房间铺设导引线,在墙上贴识别二维码,在室外可以给机器人安装定位设备,这些我们都称之为传感器,传感器分为两类: 1.携带于机器人本体上,例如相机,激光传感器等 2.安装于环境中的,例如导…
SLAM简介 : SLAM是 Simultaneous Localization and Mapping 的缩写,中文译作 " 同时定位与地图构建 ".它是指搭载特定传感器的主题,在没有环境先验信息的情况下,于运动过程中建立环境的模拟,同时估计自己的运动.如果传感器主要是相机,那就称之为 " 视觉SLAM ". SLAM 的目的是为了解决 " 定位 " 与 " 地图构建 " 这两个问题.也就是说,一边要估计传感器自身的位置,一…
版权声明:本文为博主原创文章,转载请注明出处: http://www.cnblogs.com/newneul/p/8571653.html 3.题目回顾:在稀疏直接法中,假设单个像素周围小块的光度也不变,是否可以提高算法的健壮性?请编程实现.分析:根据直接法的思想:基于灰度不变假设.因为题目假设了周围小块光度也不变,那么我们可以用单个像素周围的3x3或5x5小块的平均灰度值作为单个像素的灰度值,从一定程度上调高了健壮性,但是效果提升有限.下面程序集成了direct_sparse.cpp程序的解释…
// ceres 版本 1 #include <opencv2/core/core.hpp> #include <ceres/ceres.h> #include <chrono> using namespace std; // 代价函数的计算模型 struct CURVE_FITTING_COST { CURVE_FITTING_COST ( double x, double y ) : _x ( x ), _y ( y ) {} // 残差的计算 template &…