kd树 求k近邻 python 代码】的更多相关文章

  之前两篇随笔介绍了kd树的原理,并用python实现了kd树的构建和搜索,具体可以参考 kd树的原理 python kd树 搜索 代码 kd树常与knn算法联系在一起,knn算法通常要搜索k近邻,而不仅仅是最近邻,下面的代码将利用kd树搜索目标点的k个近邻. 首先还是创建一个类,用于保存结点的值,左右子树,以及用于划分左右子树的切分轴 class decisionnode: def __init__(self,value=None,col=None,rb=None,lb=None): sel…
有一个带标签的数据集X,标签为y.我们想通过这个数据集预测目标点x0的所属类别. K近邻算法是指在X的特征空间中,把x0放进去,然后找到距离x0最近的K个点.通过这K个点所属类别,一般根据少数服从多数的原则,这K个点哪个类别多,就将x0设为哪一类. 关键有三个部分: 1.距离度量:目标点与训练集中的点距离计算,一般采用欧式距离.也可以为其他距离 2.K值选择:K为超参数,所以可以通过交叉验证的方法原则K的值.K一般选比较小的值,假如K值取跟数据集一样大小,就相当于直接认定据集中哪个类的类别多,就…
通过上文可知k近邻算法的基本原理,以及算法的具体流程,kd树的生成和搜索算法原理.本文实现了kd树的生成和搜索算法,通过对算法的具体实现,我们可以对算法原理有进一步的了解.具体代码可以在我的github上查看. 代码 #!/usr/bin/python3 # -*- coding:utf-8 -*- import sys import numpy as np class Kdtree(object): ''' 类名: Kdtree 用于存储kd树的数据 成员: __value: 训练数据,保存数…
算法原理 K近邻是机器学习中常见的分类方法之间,也是相对最简单的一种分类方法,属于监督学习范畴.其实K近邻并没有显式的学习过程,它的学习过程就是测试过程.K近邻思想很简单:先给你一个训练数据集D,包括每个训练样本对应的标签.然后给你一个新的测试样本T,问你测试样本的标签预测是什么,K近邻的方法就是找到T到D中每一个样本的相似度,然后根据相似度大小对D中样本排序,取前K个最相似的样本的标签的众数作为测试样本T的标签(即前K个样本投票决定).具体相似度怎么度量,是根据测试样本到D中每个训练样本的距离…
k近邻优点:精度高.对异常值不敏感.无数据输入假定:k近邻缺点:计算复杂度高.空间复杂度高 import numpy as npimport operatorfrom os import listdir # k近邻分类器def classify0(inx, dataSet, labels, k): dataSetSize = dataSet.shape[0] # 返回dataset第一维的长度,也就是行数 diffMat = np.tile(inx, (dataSetSize, 1))-data…
题意:给定N个K维的点,Q次操作,或者修改点的坐标:或者问[L,R]这些点中最远的点. 思路:因为最后一定可以表示维+/-(x1-x2)+/-(y1-y2)+/-(z1-z2)..... 所以我们可以保存到线段树里,每次求区间最大值和最小值即可. 注意到我们可以先确定一个点的正负号,所以时间和空间节省了一半. #include<bits/stdc++.h> #define mp make_pair #define pii pair<int,int> #define F first…
目标:预测未知数据(或测试数据)X的分类y 批量kNN算法 1.输入一个待预测的X(一维或多维)给训练数据集,计算出训练集X_train中的每一个样本与其的距离 2.找到前k个距离该数据最近的样本-->所属的分类y_train 3.将前k近的样本进行统计,哪个分类多,则我们将x分类为哪个分类 # 准备阶段: import numpy as np # import matplotlib.pyplot as plt raw_data_X = [[3.393533211, 2.331273381],…
# coding:utf-8 import numpy as np import matplotlib.pyplot as plt T = [[2, 3], [5, 4], [9, 6], [4, 7], [8, 1], [7, 2]] S=[7, 3] class node: def __init__(self, point): self.left = None self.right = None self.point = point self.parent = None pass def s…
1.k近邻算法的思想 给定一个训练集,对于新的输入实例,在训练集中找到与该实例最近的k个实例,这k个实例中的多数属于某个类,就把该输入实例分为这个类. 因为要找到最近的k个实例,所以计算输入实例与训练集中实例之间的距离是关键! k近邻算法最简单的方法是线性扫描,这时要计算输入实例与每一个训练实例的距离,当训练集很大时,非常耗时,这种方法不可行,为了提高k近邻的搜索效率,常常考虑使用特殊的存储结构存储训练数据,以减少计算距离的次数,具体方法很多,这里介绍实现经典的kd树方法. 2.构造kd树 kd…
统计学习方法与Python实现(二)——k近邻法 iwehdio的博客园:https://www.cnblogs.com/iwehdio/ 1.定义 k近邻法假设给定一个训练数据集,其中的实例类别已定.分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决的方式进行预测.k近邻法不具有显式的学习过程,而实际上是利用训练数据集对特征空间进行划分,并作为其分类的模型.k近邻法的三个基本要素是 k值的选择.距离度量和分类决策规则. k近邻法的模型是将特征空间划分成一些称为单元的子空间,并且…
kd树模板+全图最小生成树 标签(空格分隔): kd树+最小生成树 题目链接 题意: k维太空中有n个点,每个点可以与距离它m近的点连边,现在给你一堆点,并给出坐标,现在要建立通信网络,一些可以互相到达的点构成一个group,现在要求每个组中的最长的边的权值最小,输出组数,和最长边的最小权值数. 题解:求一个k维空间的距离某个点的前m近点很明显可以使用kd树.权值最小,很明显用最小生成树来优化全局图,最后根据其公共父节点来算一共几个组即可. kd树讲解及模板: kd树通过划分平面来建树,对于每个…
算是机器学习中最简单的算法了,顾名思义是看k个近邻的类别,测试点的类别判断为k近邻里某一类点最多的,少数服从多数,要点摘录: 1. 关键参数:k值 && 距离计算方式 && 分类决策规则 2. k=1, 即只取最近点,容易过拟合,k取较大值,容易欠拟合.k值越小,模型越复杂.k = 3 or 5 works well. 3. k近邻算法的一个实现:kd树(k-k维空间,二叉树),分两步:构造kd树--搜索kd树.复杂度O(logN). 下图是一个kd树及对应二叉树: 4.…
统计学习方法c++实现之二 k近邻算法 前言 k近邻算法可以说概念上很简单,即:"给定一个训练数据集,对新的输入实例,在训练数据集中找到与这个实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入分为这个类."其中我认为距离度量最关键,但是距离度量的方法也很简单,最长用的就是欧氏距离,其他的距离度量准则实际上就是不同的向量范数,这部分我就不赘述了,毕竟这系列博客的重点是实现.代码地址:https://github.com/bBobxx/statistical-learning k…
题解: 好题!! 这题似乎能上我代码长度记录的前五? 调试时间长度应该也能上前五QAQ 首先题目要求的明显就是最小割,当然在整个森林上求Q次最小割肯定是会GG的,所以我们需要一个能快速求最小割的算法——最小割树. 最小割树,也叫分治最小割,就是通过预处理把原本的图缩成一颗树,树上两个节点路径上的最小边权就是它们的最小割,这个用树上倍增可以随便维护. 大概思想就是先求一次最小割,把划分出的S和T两个点集继续求最小割,向下分治然后连边缩点. 这题先对每个州预处理最小割树,州和州之间用KD树求出距离最…
K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出了.这里就运用了KNN的思想.KNN方法既可以做分类,也可以做回归,这点和决策树算法相同. KNN做回归和分类的主要区别在于最后做预测时候的决策方式不同.KNN做分类预测时,一般是选择多数表决法,即训练集里和预测的样本特征最近的K个样本,预测为里面有最多类别数的类别.而KNN做回归时,一般是选择平均…
kNN是一种基本分类与回归方法.k-NN的输入为实例的特征向量,对应于特征空间中的点:输出为实例的类别,可以取多类.k近邻实际上利用训练数据集对特征向量空间进行划分,并作为其分类的"模型".k值的选择.距离度量及分类决策规则是k近邻的三个基本要素. 算法 输入:训练数据集T={(x1,y1),(x2,y2),--..,(xN,yN)} 输出:实例x所属的类y (1)根据给定的距离度量,在训练集T中找到与x最邻近的k个点,涵盖这k个点的x的邻域记作Nk(x) (2)在Nk(x)中根据分类…
题目大意: 平面上n个点,每次给出一个点,求这个点的k远点 题解: 什么叫做k远点呢... 1 2 3 4 5中5是第一远,4是第二远... 看来我语文学的不好 那么我们直接上k-D Tree求k邻近的方式求k远离即可 #include <queue> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; inl…
目录 网格 (Grid) 网格的应用 四叉树/八叉树 (Quadtree/Octree) 四叉树/八叉树的应用 BSP树 (Binary Space Partitioning Tree) 判断点在平面前后算法 BSP树的应用 参考 k-d树 (k-dimensional tree) k-d树的构建 k-d树的应用 参考 层次包围盒树 (Bounding Volume Hierarchy Based On Tree) 层次包围盒树的应用 参考 自定义区域 判断点是否在凸多边形区域算法 自定义区域划…
给出一棵树求K级祖先.O(N*logN+Q) 更详细的讲解见:https://www.cnblogs.com/cjyyb/p/9479258.html /* 要求k级祖先,我们可以把k拆成"2^highbit(x)+tmp 形式 (highbit(x)为x在二进制位下的最高位),然后用倍增的方法把highbit(x)的部分跳了 剩下tmp的同样可以预处理掉,这样预处理就是O(n*logn)的效率, 所以对于每个询问就是O(1)回答,这样的效率就是O(n*logn+q). 于是就考虑用长链剖分.…
kd树就是一种对k维空间中的实例点进行存储以便对其进行快速检索的树形数据结构,可以运用在k近邻法中,实现快速k近邻搜索.构造kd树相当于不断地用垂直于坐标轴的超平面将k维空间切分,依次选择坐标轴对空间进行切分,选择训练实例点在选定坐标轴上的中位数为切分点.具体kd树的原理可以参考kd树的原理. 代码是参考<统计学习方法>k近邻 kd树的python实现得到 首先创建一个类,用于表示树的节点,包括:该节点的值,用于划分左右子树的切分轴,左子树,右子树 class decisionnode: de…
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:http://weibo.com/1580904460/z1PosdcKj:2.神经网络:http://weibo.com/1580904460/yBmhfrOGl:3.编程艺术第28章:http://weibo.com/1580904460/z4ZGFiDcY.你看到,blog内…
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到受人信任也是一种压力,愿我不辜负大家对我的信任…
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时…
1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1时,算法便成了最近邻算法,即寻找最近的那个邻居. 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居),这K个实例的多数属于某个类,就把该输入实例分类到这个类中. 如上图所示,有两类不同的样本数据,分别用蓝色的…
K近邻(KNN)的核心算法是kd树,转载如下几个链接: [量化课堂]一只兔子帮你理解 kNN [量化课堂]kd 树算法之思路篇 [量化课堂]kd 树算法之详细篇…
1. kd树简介 构造kd树的方法如下:构造根结点,使根结点对应于k维空间中包含所有实例点的超矩形区域;通过下面的递归方法,不断地对k维空间进行切分,生成子结点.在超矩形区域(结点)上选择一个坐标轴和在此坐标轴上的一个切分点,确定一个超平面,这个超平面通过选定的切分点并垂直于选定的坐标轴,将当前超矩形区域切分为左右两个子区域(子结点);这时,实例被分到两个子区域.这个过程直到子区域内没有实例时终止(终止时的结点为叶结点).在此过程中,将实例保存在相应的结点上. 2. kd树建立 3. kd树搜索…
K近邻(KNN):分类算法 * KNN是non-parametric分类器(不做分布形式的假设,直接从数据估计概率密度),是memory-based learning. * KNN不适用于高维数据(curse of dimension) * Machine Learning的Python库很多,比如mlpy(更多packages),这里实现只是为了掌握方法 * MATLAB 中的调用,见<MATLAB分类器大全(svm,knn,随机森林等)> * KNN算法复杂度高(可用KD树优化,C中可以用…
平台:win10 x64 +VS 2015专业版 +opencv-2.4.11 + gtk_-bundle_2.24.10_win32 主要参考:1.代码:RobHess的SIFT源码:SIFT+KD树+BBF算法+RANSAC算法 2.书:王永明 王贵锦 <图像局部不变性特征与描述> RobHess的SIFT源码中的几个文件说明? RobHess的SIFT源码分析: (1) minpq.h和minpq.c文件这两个文件中实现了最小优先级队列(Minimizing Priority Queue…
题目链接 Problem Description Mr. Frog has an integer sequence of length n, which can be denoted as a1,a2,⋯,an There are m queries. In the i-th query, you are given two integers li and ri. Consider the subsequence ali,ali+1,ali+2,⋯,ari. We can denote the…
KNN算法的定义: KNN通过测量不同样本的特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.K通常是不大于20的整数.KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. 下面通过一个简单的例子说明一下:如下图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将…