【LOJ】#2586. 「APIO2018」选圆圈】的更多相关文章

题目:https://loj.ac/problem/2586 只会 19 分的暴力. y 都相等,仍然按直径从大到小做.如果当前圆没有被删除,那么用线段树把 [ x-r , x+r ] 都打上它的标记. 看当前圆有没有被删除,只要看 x-r 和 x+r 两个位置上的标记就行了.因为被删除的话当前圆的直径更小,有相交的话, x-r 或 x+r 一定在对方内部.可以 x-r 和 x+r 分别在两个圆内部,看看哪个更大即可. #include<cstdio> #include<cstring&…
题解 不旋转坐标系,TLE,旋转坐标系,最慢一个点0.5s--maya,出题人数据水平很高了-- 好吧,如果你不旋转坐标系,写一个正确性和复杂度未知的K - D树,没有优化,你可以得到87分的好成绩 但是你就是傻逼,你就是写不出来,能有什么办法,APIO Ag滚粗了呗= = 这道题看起来需要用什么东西维护一下平面,查找给定一个圆这个平面内多少个圆和它有交集,可以K - D树 我们考虑维护一个集合里的圆覆盖的矩形,就是最大的横纵坐标和最小的横纵坐标,查询的时候只要看看和当前圆横纵坐标是不是有交集,…
传送门 Description 有\(n\)个圆,每次找到这些圆中半径最大中的编号最小的圆,删除ta及与其有交集的所有圆. 对于每个圆,求出它是被哪一个圆删除的. Solution  K-D Tree 每个点表示这个圆的外接矩形 排序后直接暴力搜索 相当于在搜索过程中进行了剪枝 复杂度玄学 要对全图坐标进行旋转 这题的\(eps\)不要开得太大,\(1e-3\)就行了,不然会莫名的Wa Code  #include<bits/stdc++.h> #define ll long long #de…
#2585. 「APIO2018」新家 https://loj.ac/problem/2585 分析: 线段树+二分. 首先看怎样数颜色,正常的时候,离线扫一遍右端点,每次只记录最右边的点,然后查询左端点,这里不太行.这里只需要统计是否全出现过,pre[i]为这个颜色的上一个位置,那么这也就说明了pre[i]+1这段区间没出现过,所以要求[r+1,n]这段区间的最小的pre都要大于等于l.于是这就是线段树区间查询最小值了. 注意的是,每个点的pre有多个,每个叶子节点包含一个set,把所有的值插…
是不是$ vector$存图非常慢啊...... 题意:求数对$(x,y,z)$的数量使得存在一条$x$到$z$的路径上经过$y$,要求$x,y,z$两两不同  LOJ #2587 $ Solution:$ 首先考虑一棵树的情况怎么做 我们枚举每一个点计算贡献,贡献即为经过这个点的链的数量 只要求出这个点的所有子树大小就可以算出这个贡献 然后发现如果某条链经过某个点双联通分量 这个连通分量里的所有点都会被这条链的端点对计算贡献 我们直接构建圆方树,令方点的权值为这个点双连通分量的大小 由于每个圆…
题目:https://loj.ac/problem/2587 先写了 47 分暴力. 对于 n<=50 的部分, n3 枚举三个点,把图的圆方树建出来,合法条件是 c 是 s -> f 路径上的方点连出去的某个圆点.像找 LCA 那样走一遍 s -> f 路径即可. 对于树的部分,考虑一条路径对答案的贡献是其边数减 1 ,所以对于每条边求一下它在多少路径中,就是 siz[ v ] * ( n-siz[ v ] ) ( v 是它指向的点),然后答案再减去 \( C_n^2 \) 即可. 注…
题目:https://loj.ac/problem/2585 算答案的时候要二分! 这样的话,就是对于询问位置 x ,二分出一个最小的 mid 使得 [ x-mid , x+mid ] 里包含所有种类的商店. 判断一个区间里包含所有种类商店的方法是对于每种商店,记录每个这种商店的同类型前驱:然后看看 [ x+mid+1 , INF ] 里所有种类商店的前驱最小值是不是 < x+mid 就行了. 实现方法就是对于每个种类开一个 set 维护该种类商店的所有位置,再对所有种类开一个线段树维护这个区间…
题目描述 比特镇的路网由 \(m\) 条双向道路连接的 \(n\) 个交叉路口组成. 最近,比特镇获得了一场铁人两项锦标赛的主办权.这场比赛共有两段赛程:选手先完成一段长跑赛程,然后骑自行车完成第二段赛程. 比赛的路线要按照如下方法规划: 1.先选择三个两两互不相同的路口 \(s\) ,\(c\) 和 \(f\) ,分别作为比赛的起点.切换点(运动员在长跑到达这个点后,骑自行车前往终点).终点. 2.选择一条从 \(s\) 出发,经过 \(c\) 最终到达 \(f\) 的路径.考虑到安全因素,选…
题目链接 loj#2016. 「SCOI2016」美味 题解 对于不带x的怎么做....可持久化trie树 对于带x,和trie树一样贪心 对于答案的二进制位,从高往低位贪心, 二进制可以表示所有的数,那么每一位的选取情况,对于之后的可选区间也是一定的 贪心时,判断当前位,是否可以为1, 用线段树维护一下,每次走左儿子代表这一位选了1,走又儿子为选了0,这样区间是不交 对于b的限制,改一下查询的区间就行了 代码 #include<cstdio> #include<algorithm>…
Loj #3102. 「JSOI2019」神经网络 题目背景 火星探险队发现,火星人的思维方式与人类非常不同,是因为他们拥有与人类很不一样的神经网络结构.为了更好地理解火星人的行为模式,JYY 对小镇上火星人的大脑进行了扫描,得到了一些重要数据. 题目描述 火星人在出生后,神经网络可以看作是一个由若干无向树 \(\{T_1(V_1, E_1), T_2(V_2, E_2),\ldots T_m(V_m, E_m)\}\) 构成的森林.随着火星人年龄的增长,神经连接的数量也不断增长.初始时,神经网…
Loj #3044. 「ZJOI2019」Minimax 搜索 题目描述 九条可怜是一个喜欢玩游戏的女孩子.为了增强自己的游戏水平,她想要用理论的武器武装自己.这道题和著名的 Minimax 搜索有关. 可怜有一棵有根树,根节点编号为 \(1\).定义根节点的深度为 \(1\),其他节点的深度为它的父亲的深度加一.同时在叶子节点权值给定的情况下,可怜用如下方式定义了每一个非节点的权值: - 对于深度为奇数的非叶子节点,它的权值是它所有子节点的权值最大值. - 对于深度为偶数的非叶子节点,它的权值…
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生 活不可或缺的必需品!能充上电吗?现在就试试看吧!」 SHOI 概率充电器由 \(n-1\) 条导线连通了 \(n\) 个充电元件.进行充电时,每条导线是否可以导电以 概率决定,每一个充电元件自身是否直接进行充电也由概率决定.随后电能可以从直接充电的元件经…
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \sum_{i=0}^{T-1} [(i\in A\pmod P)\land(i\in B\pmod Q)] \] 换言之,就是问有多少个小于 \(T\) 的非负整数 \(x\) 满足:\(x\) 除以 \(P\) 的余数属于 \(A\) 且 \(x\) 除以 \(Q\) 的余数属于 \(B\). 输…
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\times a_i\%\) 单位的光会穿过它,有 \(x\times b_i\%\) 的会被反射回去. 现在 \(n\) 层玻璃叠在一起,有 \(1\) 单位的光打到第 \(1\) 层玻璃上,那么有多少单位的光能穿过所有 \(n\) 层玻璃呢? 输入格式 第一行一个正整数 \(n\),表示玻璃层数.…
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的神器,试图借助神器的神秘 力量帮助她们战胜地灾军团. 在付出了惨痛的代价后,精灵们从步步凶险的远古战场取回了一件保存尚完好的神杖.但在经历过那场所有史书都视为禁忌的"诸神黄昏之战"后,神杖上镶嵌的奥术宝石 已经残缺,神力也几乎消耗殆尽.精灵高层在至高会议中决定以举国之力收集残存至今的奥术宝…
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一直随机游走,直到点集 \(S\) 中所有点都至少经过一次的话,期望游走几步. 特别地,点 \(x\)(即起点)视为一开始就被经过了一次. 答案对 $998244353 $ 取模. 输入格式 第一行三个正整数 \(n,Q,x\). 接下来 \(…
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k\).第一次修改之前及每次修改之后,都要求你找到一个同样长度为 \(n\) 的单调不降序列 \(B_1, \ldots , B_n\),使得 \(\sum_{i=1}^n (A_i −B_i)^2\) 最小,并输出该最小值.需要注意的是每次操作的影响都是独立的,也即每次操作只会对当前询问造成影响.为…
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开始凸多边形中有 \(n\) 条线段,即多边形的 \(n\) 条边.这里我们用一个有序数对 \((a, b)\)(其中 \(a < b\))来表示一条端点分别为顶点 \(a, b\) 的线段. 在游戏开始之前,小 W 会进行一些操作.每次操作时,他会选中多边形的两个互异顶点,给它们之间连一条线段,并且…
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 \(x\) 欧拉或者 \(x\) 木大表示有 \(x\) 个欧拉或者木大. 为了简化内容我们现在用字母表示喊出的话. 我们用数字和字母来表示一个串,例如:2 a 3 b 表示的串就是 aabbb. 一开始漫画中什么话都没有,接下来你需要依次实现 \(n\) 个操作,总共只有 \(2\) 种操作:…
Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\le L,1\le v\le n)\).这张图不是简单图,对于任意两个顶点 \((u_1,v_1),(u_2,v_2)\),如果 \(u_1<u_2\),则从 \((u_1,v_1)\) 到 \((u_2,v_2)\) 一共有 \(w(v_1,v_2)\) 条不同的边,如果 \(u_1\ge u_2\…
Loj #3057. 「HNOI2019」校园旅行 某学校的每个建筑都有一个独特的编号.一天你在校园里无聊,决定在校园内随意地漫步. 你已经在校园里呆过一段时间,对校园内每个建筑的编号非常熟悉,于是你情不自禁的把周围每个建筑的编号都记了下来--但其实你没有真的记下来,而是把每个建筑的编号除以 \(2\) 取余数得到 \(0\) 或 \(1\),作为该建筑的标记,多个建筑物的标记连在一起形成一个 \(01\) 串. 你对这个串很感兴趣,尤其是对于这个串是回文串的情况,于是你决定研究这个问题. 学校…
题意 LOJ #2359. 「NOIP2016」天天爱跑步 题解 考虑把一个玩家的路径 \((x, y)\) 拆成两条,一条是 \(x\) 到 \(lca\) ( \(x, y\) 最近公共祖先) 的路径,另一条是 \(lca\) 到 \(y\) 的路径.(对于 \(x, y\) 是 \(lca\) 的情况需要特殊考虑一下就行了) 这个求 \(lca\) 的过程用倍增实现就行了. 假设令到达时间为 \(at\) . 不难发现,在树上向上的路径满足 \(dep_u + at_u=d_1\) (深度…
loj#2483. 「CEOI2017」Building Bridges 链接 https://loj.ac/problem/2483 思路 \[f[i]=f[j]+(h[i]-h[j])^2+(sum[i-1]-sum[j])\] \[f[i]=f[j]+h[i]^2+h[j]^2-2*h[i]*h[j]+sum[i-1]-sum[j]\] \[sum[j]-f[j]-h[j]^2=(-2*h[j])*h[i]+sum[i-1]+h[i]^2-f[i]\] \[f[j]+h[j]^2-sum[…
题目链接 loj#2009. 「SCOI2015」小凸玩密室 题解 树高不会很高<=20 点亮灯泡x,点亮x的一个子树,再点亮x另外的子树, 然后回到x的父节点,点亮父节点之后再点亮父节点的其他子树 所以对于一个节点x,有这样两种情况 x还没有被点亮,那么下一个被点亮的是x的一个儿子 x是叶子节点,那么下一个被点亮的是它的祖先,或者是它祖先的儿子 设f[i][j]表示点亮i之后回到i的第j个祖先的最小花费 设g[i][j]表示点亮i之后回到i的第j个祖先的另一个儿子的最小花费 然后从下到上,由儿…
题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 这样做 . 把通配符设成 \(0\) 然后 . 别的按 \(\mathrm{ASCII}\) 码 给值 , 最后把他写成式子的形式 ... 后来发现太年轻了 qwq 先要做这题 , 那么先发现性质咯 : 存在一个长度为 \(len\) 的 \(border\) 当且仅当对于 \(\forall i…
题意 LOJ #2721. 「NOI2018」屠龙勇士 题解 首先假设每条龙都可以打死,每次拿到的剑攻击力为 \(ATK\) . 这个需要支持每次插入一个数,查找比一个 \(\le\) 数最大的数(或者找到 \(>\) 一个数的最小数),删除一个数. 这个东西显然是可以用 std :: multiset<long long> 来处理的(手写权值线段树或者平衡树也行). 对于每一条龙我们只能刚好一次秒杀,并且要恰好算血量最后为 \(0\)(一波带走). 然后就转化成求很多个方程: \[ \…
题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条件 !! 所以它询问的就是向左走的最短路了 . 不难发现只有两种策略 , 要么一直向左走 ; 要么第一次向右走 , 然后一直向左走 . 并且到一个定点 \(x\) 的最短路长度 肯定是从右向左一段段递增的 . 为什么呢 ? 不难发现 如果向右走两次 , 那么只有一次是一定有效的 , 另外一次的 \(l_i\)…
题面 LOJ #6432. 「PKUSC2018」真实排名 注意排名的定义 , 分数不小于他的选手数量 !!! 题解 有点坑的细节题 ... 思路很简单 , 把每个数分两种情况讨论一下了 . 假设它为 \(x\) . 不对它进行翻倍操作 : 那么很容易发现 \(\displaystyle [\lceil \frac{x}{2}\rceil, x)\) 的数都不翻倍 . 其余部分任意 . 假设有 \(tot\) 个 . 那么这部分答案就是 \(\displaystyle \binom {n-tot…
题目链接 loj#2071. 「JSOI2016」最佳团体 题解 树形dp强行01分规 代码 #include<cstdio> #include<cstring> #include<algorithm> #define gc getchar() #define pc putchar inline int read() { int x = 0,f = 1; char c = gc; while(c < '0' || c > '9') c = gc; while…
目录 题目链接 题解 代码 题目链接 loj#2076. 「JSOI2016」炸弹攻击 题解 模拟退火 退火时,由于答案比较小,但是温度比较高 所以在算exp时最好把相差的点数乘以一个常数让选取更差的的概率降低 代码 #include<ctime> #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> #define gc getchar() #define…