2 数据结构的性能分析 timeit】的更多相关文章

# python数据结构的性能分析 https://www.cnblogs.com/bobo-zhang/p/10521769.html from timeit import Timer #计算运行平均耗时 def lst(): a_lst = [] for i in range(1000): a_lst = a_lst+[i] def lst1(): a_lst = [] for i in range(1000): a_lst.append(i) def lst2(): a_lst = [i…
一.引言 - 现在大家对 大O 算法和不同函数之间的差异有了了解.本节的目标是告诉你 Python 列表和字典操作的 大O 性能.然后我们将做一些基于时间的实验来说明每个数据结构的花销和使用这些数据结构的好处.重要的是了解这些数据结构的效率,因为它们是本博客实现其他数据结构所用到的基础模块.本节中,我们将不会说明为什么是这个性能.在后面的博文中,你将看到列表和字典一些可能的实现,以及性能是如何取决于实现的. 二.列表: - python 的设计者在实现列表数据结构的时候有很多选择.每一个这种选择…
一.列表: - python 的设计者在实现列表数据结构的时候有很多选择.每一个这种选择都可能影响列表操作的性能.为了帮助他们做出正确的选择,他们查看了最常使用列表数据结构的方式,并且优化了实现,以便使得最常见的操作非常快. - 在列表的操作有一个非常常见的编程任务就是是增加一个列表.我们马上想到的有两种方法可以创建更长的列表,可以使用 append 方法或拼接运算符.但是这两种方法那种效率更高呢.这对你来说很重要,因为它可以帮助你通过选择合适的工具来提高你自己的程序的效率. - 让我们看看四种…
目录: 1.引言 2.列表 3.字典 一.引言 - 现在大家对 大O 算法和不同函数之间的差异有了了解.本节的目标是告诉你 Python 列表和字典操作的 大O 性能.然后我们将做一些基于时间的实验来说明每个数据结构的花销和使用这些数据结构的好处.重要的是了解这些数据结构的效率,因为它们是本博客实现其他数据结构所用到的基础模块. 二.列表: - python 的设计者在实现列表数据结构的时候有很多选择.每一个这种选择都可能影响列表操作的性能.为了帮助我们做出正确的选择,他们查看了最常使用列表数据…
Python内置类型性能分析 timeit模块 timeit模块可以用来测试一小段Python代码的执行速度. class timeit.Timer(stmt='pass', setup='pass', timer=<timer function>) Timer是测量小段代码执行速度的类. stmt参数是要测试的代码语句(statment): setup参数是运行代码时需要的设置: timer参数是一个定时器函数,与平台有关. timeit.Timer.timeit(number=100000…
前言 我们可以通过查看程序核心算法的代码,得知核心算法的渐进上界或者下界,从而大概估计出程序在运行时的效率,但是这并不够直观,也不一定十分靠谱(在整体程序中仍有一些不可忽略的运行细节在估计时被忽略了),因此在实际评测程序时我们还是需要实际的考量程序的运行时间和瓶颈,最好具体到执行一段代码多少次,执行一段代码花了多少时间,幸好的是Python自带了许多有用的工具,可以帮助我们实现这些要求,下面是一些我在学习中记录的笔记,从简单到复杂介绍了python性能分析的方法,希望我的笔记能帮到您. 注:写作…
目录 背景 ArrayList LinkedList 实例分析 1.增加数据 2.插入数据 3.遍历数据 3.1.LinkedList遍历改进 总结 背景 ArrayList与LinkedList是Java编程中经常会用到的两种基本数据结构,在书本上一般会说明以下两个特点: 对于需要快速随机访问元素,应该使用ArrayList. 对于需要快速插入,删除元素,应该使用LinkedList. 该文通过实际的例子分析这两种数据的读写性能. ArrayList ArrayList是实现了基于动态数组的数…
[编者按]本文作者为 Bryan Helmig,主要介绍 Python 应用性能分析的三种进阶方案.文章系国内 ITOM 管理平台 OneAPM 编译呈现. 我们应该忽略一些微小的效率提升,几乎在 97% 的情况下,都是如此:过早的优化是万恶之源.-- Donald Knuth 如果不先想想Knuth的这句名言,就开始进行优化工作,是不明智的.然而,有时你为了获得某些特性不假思索就写下了O(N^2) 这样的代码,虽然你很快就忘记它们了,它们却可能反咬你一口,给你带来麻烦:本文就是为这种情况而准备…
在分析python代码性能瓶颈,但又不想修改源代码的时候,ipython shell以及第三方库提供了很多扩展工具,可以不用在代码里面加上统计性能的装饰器,也能很方便直观的分析代码性能.下面以我自己实现的一个快排代码为例,带你使用集中不同的性能分析工具. def quick_sort(data, low, high): if low >= high: return left, right = low, high key = data[left] while left < right: whil…
[转]MYSQL索引结构原理.性能分析与优化 第一部分:基础知识 索引 官方介绍索引是帮助MySQL高效获取数据的数据结构.笔者理解索引相当于一本书的目录,通过目录就知道要的资料在哪里, 不用一页一页查阅找出需要的资料. 唯一索引(unique index) 强调唯一,就是索引值必须唯一. 创建索引: create unique index 索引名 on 表名(列名); alter table 表名 add unique index 索引名 (列名); 删除索引: drop index 索引名…