jieba是python下的一个检索库, 有人将这个库移植到了asp.net 平台下, 完全可以替代lucene.net以及盘古分词的搭配 之所以写这个, 其实是因为昨天面试时, 被问到网站的关键字检索你怎么做?我就是说了下sql模糊查询以及sql语句优化, 缓存.以前接触过关键字分词, 但是在.net平台下没有成熟的分词检索库, 不像java有lucene, 尽管也移植到了.net, 但是更新慢.我之前学python的时候留意到了python的分词检索, 以及做词云, 就想着有没有python…
jieba是python下的一个检索库, 有人将这个库移植到了asp.net 平台下, 完全可以替代lucene.net以及盘古分词的搭配 之所以写这个, 其实是因为昨天面试时, 被问到网站的关键字检索你怎么做?我就是说了下sql模糊查询以及sql语句优化, 缓存.以前接触过关键字分词, 但是在.net平台下没有成熟的分词检索库, 不像java有lucene, 尽管也移植到了.net, 但是更新慢.我之前学python的时候留意到了python的分词检索, 以及做词云, 就想着有没有python…
要支持中文分词,还需要下载Coreseek,可以去官方搜索下载,这里我用的4.1 百度云下载地址:      https://pan.baidu.com/s/1slNIyHf tar -zxvf coreseek-4.1-beta.tar.gz cd coreseek-4.1-beta cd mmseg-3.2.14/ ./bootstrap   //测试安装环境 libtoolize: putting auxiliary files in AC_CONFIG_AUX_DIR, `config'…
分词是自然语言处理中最基本的一个任务,这篇小文章不介绍相关的理论,而是介绍一个电子病历分词的小实践. 开源的分词工具中,我用过的有jieba.hnlp和stanfordnlp,感觉jieba无论安装和使用都比较便捷,拓展性也比较好.是不是直接调用开源的分词工具,就可以得到比较好的分词效果呢?答案当然是否定的.尤其是在专业性较强的领域,比如医疗行业,往往需要通过加载相关领域的字典.自定义字典和正则表达式匹配等方式,才能得到较好的分词效果. 这次我就通过一个电子病历分词的小实践,分析在具体的分词任务…
(转https://blog.csdn.net/gzmfxy/article/details/78994396) 中文分词是中文文本处理的一个基础步骤,也是中文人机自然语言交互的基础模块,在进行中文自然语言处理时,通常需要先进行分词.本文详细介绍现在非常流行的且开源的分词器结巴jieba分词器,并使用python实战介绍. jieba分词算法使用了基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能生成词情况所构成的有向无环图(DAG), 再采用了动态规划查找最大概率路径,找出基于词频的最大切…
词图 词图指的是句子中所有词可能构成的图.如果一个词A的下一个词可能是B的话,那么A和B之间具有一条路径E(A,B).一个词可能有多个后续,同时也可能有多个前驱,它们构成的图我称作词图. 需要稀疏2维矩阵模型,以一个词的起始位置作为行,终止位置作为列,可以得到一个二维矩阵.例如:“他说的确实在理”这句话 图词的存储方法:一种是的DynamicArray法,一种是快速offset法.Hanlp代码中采用的是第二种方法. 1.DynamicArray(二维数组)法 在词图中,行和列的关系:col为n…
一.安装 官方链接:http://pynlpir.readthedocs.org/en/latest/installation.html 官方网页中介绍了几种安装方法,大家根据个人需要,自行参考!我采用的是: Install PyNLPIR using easy_install: $ easy_install pynlpir 二.使用NLPIR进行分词 注:此处主要使用pynlpir.nlpir模块,该模块使用ctypes为NLPIR提供面向Python的接口,因此在调用NLPIR方法时,基本与…
ElasticSearch 是强大的搜索工具,并且是ELK套件的重要组成部分 好记性不如乱笔头,这次是在windows环境下搭建es中文分词搜索测试环境,步骤如下 1.安装jdk1.8,配置好环境变量 2.下载ElasticSearch7.1.1,版本变化比较快,刚才看了下最新版已经是7.2.0,本环境基于7.1.1搭建,下载地址https://www.elastic.co/cn/downloads/elasticsearch,得到一个zip压缩包,解压缩后cmd下运行下面的命令即可启动ES .…
前言 用过Lucene.net的都知道,我们自己搭建索引服务器时和解决搜索匹配度的问题都用到过盘古分词.其中包含一个词典. 那么既然用到了这种国际化的框架,那么就避免不了中文分词.尤其是国内特殊行业比较多.比如油田系统从勘探.打井.投产等若干环节都涉及一些专业词汇. 再像电商,手机.手机配件.笔记本.笔记本配件之类.汽车,品牌.车系.车型等等,这一系列数据背后都涉及各自领域的专业名次,所以中文分词就最终的目的还是为了解决搜索结果的精确度和匹配度的问题. IK搜索预览 我的univeral Cor…
Nianwen Xue在<Chinese Word Segmentation as Character Tagging>中将中文分词视作为序列标注问题(sequence labeling problem),由此引入监督学习算法来解决分词问题. 1. HMM 首先,我们将简要地介绍HMM(主要参考了李航老师的<统计学习方法>).HMM包含如下的五元组: 状态值集合\(Q=\{q_1, q_2, \cdots, q_N\}\),其中\(N\)为可能的状态数: 观测值集合\(V=\{v_…