转载--C 的回归】的更多相关文章

转载自:http://blog.csdn.net/zouxy09/article/details/20319673 一.逻辑回归(LogisticRegression) Logistic regression (逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性. 还有类似的某用户购买某商品的可能性,某病人患有某种疾病的可能性啊等等.这个世界是随机的(当然了,人为的确定性系统除外,但也有可能有噪声或产生错 误的结果,只是这个错误发生的可能性太小了,小到千万年不遇,小到忽略不计而…
转载自http://blog.codingnow.com/2007/09/c_vs_cplusplus.html 周末出差,去另一个城市给公司的一个项目解决点问题.回程去机场的路上,我用手机上 google reader 打发时间.第一眼就看到孟岩大大新的一篇:Linux之父话糙理不糙 .主题是 C 与 C++ 的语言之争.转到刘江的 blog 下读完了Linux之父炮轰C++:糟糕程序员的垃圾语言 大呼过瘾.立刻把链接短信发给了几个朋友. 语言之争永远是火药味十足的话题.尤其是 C 和 C++…
原文地址:https://www.cnblogs.com/zichun-zeng/p/3824745.html 1. logistic回归与一般线性回归模型的区别: (1)     线性回归的结果变量 与因变量或者反应变量与自变量之间的关系假设是线性的,而logistic回归中 两者之间的关系是非线性的: (2)     前提假设不同,在线性回归中,通常假设,对于自变量x的某个值,因变量Y的观测值服从正态分布,但在logistic回归中,因变量Y 服从二项分布或者多项分布: (3)     lo…
前言: 在上一讲Deep learning:五(regularized线性回归练习)中已经介绍了regularization项在线性回归问题中的应用,这节主要是练习regularization项在logistic回归中的应用,并使用牛顿法来求解模型的参数.参考的网页资料为:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex5/ex5.html.要解决的…
转载自:AriesSurfer 原文见 http://blog.csdn.NET/acdreamers/article/details/27365941 Logistic回归为概率型非线性回归模型,是研究二分类观察结果与一些影响因素之间关系的一种多 变量分析方法.通常的问题是,研究某些因素条件下某个结果是否发生,比如医学中根据病人的一些症状来判断它是 否患有某种病. 在讲解Logistic回归理论之前,我们先从LR分类器说起.LR分类器,即Logistic Regression Classifi…
[转载]边框回归(Bounding Box Regression) 许多模型中都应用到了这种方法来调整piror使其和ground truth尽量接近,例如之前自己看过的SSD模型 这篇文章写的很好,https://blog.csdn.net/zijin0802034/article/details/77685438…
理论原理部分可以看这一篇:http://www.cnblogs.com/charlesblc/p/6109551.html 这里是实战部分.参考了 http://www.cnblogs.com/shishanyuan/p/4747778.html 采用了三个案例,分别对应聚类.回归和协同过滤的算法. 我觉得很好,需要每一个都在实际系统中试一下. 更多api介绍可以参考 http://spark.apache.org/docs/2.0.1/ml-guide.html 1.1 聚类实例 1.1.1 …
灰色预测的主要特点是只需要4个数据,就能解决历史数据少,序列的完整性以及可靠性低的问题,能将无规律的原始数据进行生成得到规律性较强的生成序列,易于检验 但缺点是只适合中短期的预测,且只适合指数级增长的预测. 在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据预处理后的数据序列称为生成列.对原始数据进行预处理,不是寻找它的统计规律和概率分布,而是将杂乱无章的原始数据列通过一定的方法处理,变成有规律的时间序列数据,即以数找数的规律,再建立动态模型. 灰色预测通过鉴别系统因素之间发展趋势…
 Logistic回归总结 作者:洞庭之子 微博:洞庭之子-Bing (2013年11月) 1.引言 看了Stanford的Andrew Ng老师的机器学习公开课中关于Logistic Regression的讲解,然后又看了<机器学习实战>中的LogisticRegression部分,写下此篇学习笔记总结一下. 首先说一下我的感受,<机器学习实战>一书在介绍原理的同时将全部的算法用源代码实现,非常具有操作性,可以加深对算法的理解,但是美中不足的是在原理上介绍的比较粗略,很多细节没有…
之前在逻辑回归原理小结这篇文章中,对逻辑回归的原理做了小结.这里接着对scikit-learn中逻辑回归类库的我的使用经验做一个总结.重点讲述调参中要注意的事项. 1. 概述 在scikit-learn中,与逻辑回归有关的主要是这3个类.LogisticRegression, LogisticRegressionCV 和logistic_regression_path.其中LogisticRegression和LogisticRegressionCV的主要区别是LogisticRegressio…