Codeforces 1097D (DP+分解质因数)】的更多相关文章

题目 传送门 分析 考虑\(n=p^q\)且p为质数的情况 设dp[i][j]表示经过i次变化后数为\(p^j\)的概率 则初始值dp[0][q]=1 状态转移方程为\(dp[i][j]=\sum{}\frac{1}{u+1}dp[i-1][u],u\in[j,q]\) 最终的期望值\(E(p^q)=\sum dp[k][j] ·p^j ,j \in [0,q]\) 那么如果n不是某个质数的q次方呢 把n分解质因数,\(n={p_1}^{q_1}{p_2}^{q_2} \dots {p_n}^{…
[BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 1,2,3,…,n−1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n). 现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 x…
题目链接:http://codeforces.com/problemset/problem/893/E 题意: 共q组数据(q <= 10^5),每组数据给定x,y(x,y <= 10^6). 问你有多少种长度为y,乘积为x的整数数列.(可以有负数) 题解: 首先考虑数列只有正整数的情况. 将x分解质因数:x = ∑ a[i]*p[i] 由于x较大,所以要先用线性筛求出素数,再枚举素数分解质因数. 那么一个乘积为x的数列可以看做,将x的所有∑ p[i]个质因子,分配到了y个位置上. 设f(i)…
题目描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 1,2,3,…,n−1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n). 现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 x 的寿司,小 W 品尝的寿司中存在一种美味度为 y 的寿司,而…
[CodeForces - 1225D]Power Products [数论] [分解质因数] 标签:题解 codeforces题解 数论 题目描述 Time limit 2000 ms Memory limit 524288 kB Source Technocup 2020 - Elimination Round 2 Tags hashing math number theory *1900 Site https://codeforces.com/problemset/problem/1225…
[Codeforces 1246B] Power Products (STL+分解质因数) 题面 给出一个长度为\(n\)的序列\(a_i\)和常数k,求有多少个数对\((i,j)\)满足\(a_i \times a_j = x^k (x \in \mathbb{N}^+)\).即这两个数乘起来恰好为一个正整数的\(k\)次方 \(a_i,n \leq 10^5\) 分析 考虑\(x^k\)的质因数分解式 , 那么每一项的指数一定是k的倍数,即 \(k|x_i\). 因此对于每个 \(a_i\)…
乘除都在150以内,分解质因数后发现只有35个,建立35个树状数组/线段树,做区间加.区间查询,最后快速幂起来. #include<cstdio> #include<cstring> using namespace std; #define N 50001 typedef long long ll; ll Quick_Pow(ll a,ll p,ll MOD) { if(!p) return 1; ll ans=Quick_Pow(a,p>>1,MOD); ans=an…
题目链接:http://codeforces.com/gym/101981/attachments 题意: 令 $mul(l,r) = \prod_{i=l}^{r}a_i$,且 $fac(l,r)$ 代表 $mul(l,r)$ 的不同素因子个数.求 $\sum_{i=1}^{n}\sum_{j=i}^{n}fac(i,j)$. InputThe first line contains one integer n (1 \le n \le 10^6) — the length of the se…
  package test; import java.util.Scanner; public class Test19 { /** * 分析:对n进行分解质因数,应先找到一个最小的质数k * 最小的质数:即“2”.2是最小的质数,即是偶数又是质数,然后按下述步骤完成: *(1)如果这个质数恰等于n,则说明分解质因数的过程已经结束,打印出即可. *(2)如果n>k,但n能被k整除,则应打印出k的值,并用n除以k的商,作为新的正整数你n,重复执行第一步. *(3)如果n不能被k整除,则用k+1作…
1 分解质因数(5分) 题目内容: 每个非素数(合数)都可以写成几个素数(也可称为质数)相乘的形式,这几个素数就都叫做这个合数的质因数.比如,6可以被分解为2x3,而24可以被分解为2x2x2x3. 现在,你的程序要读入一个[2,100000]范围内的整数,然后输出它的质因数分解式:当读到的就是素数时,输出它本身. 提示:可以用一个函数来判断某数是否是素数. 输入格式: 一个整数,范围在[2,100000]内. 输出格式: 形如: n=axbxcxd 或 n=n 所有的符号之间都没有空格,x是小…