机器学习实战笔记-2-kNN近邻算法】的更多相关文章

机器学习实战笔记(1) 1. 写在前面 近来感觉机器学习,深度学习神马的是越来越火了,从AlphaGo到Master,所谓的人工智能越来越NB,而我又是一个热爱新潮事物的人,于是也来凑个热闹学习学习.最近在看<Machine Learning IN ACTION>(作者:Peter Harrington)这本书,感觉非常不错.该书不是单纯的进行理论讲解,而是结合了许多小例子深度浅出地进行实战介绍.本博文作为学习笔记,用来记录书中重点内容和稍微地进行知识点的补充,也希望给看到的人带来一些帮助.…
Apriori算法 优点:易编码实现:缺点:大数据集上较慢:适用于:数值型或标称型数据. 关联分析:寻找频繁项集(经常出现在一起的物品的集合)或关联规则(两种物品之间的关联关系). 概念:支持度:数据集中包含某项集的记录所占的比例P(A):可信度(置信度):对某个关联规则\(A\rightarrow B\),\(\frac{P\left( \text{AB} \right)}{P(A)}\)表示. Apriori原理:频繁项集的子集一定是频繁项集,非频繁项集的超集一定是非频繁项集. Aprior…
机器学习实战笔记-k-近邻算法 目录 1. k-近邻算法概述 2. 示例:使用k-近邻算法改进约会网站的配对效果 3. 示例:手写识别系统 4. 小结 本章介绍了<机器学习实战>这本书中的第一个机器学习算法:k-近邻算法,它非常有效而且易于掌握.首先,我们将探讨k-近邻算法的基本理论,以及如何使用距离测量的方法分类物品:其次我们将使用Python从文本文件中导入并解析数据:再次,本文讨论了当存在许多数据来源时,如何避免计算距离时可能碰到的一些常见错误:最后,利用实际的例子讲解如何使用k-近邻算…
前半部分是简介, 后半部分是案例 KNN近邻算法: 简单说就是采用测量不同特征值之间的距离方法进行分类(k-Nearest Neighbor,KNN) 优点: 精度高.对异常值不敏感.无数据输入假定 缺点:时间复杂度高.空间复杂度高 1.当样本不平衡时,比如一个类的样本容量很大,其他类的样本容量很小,输入一个样本的时候,K个临近值中大多数都是大样本容量的那个类,这时可能就会导致分类错误.改进方法是对K临近点进行加权,也就是距离近的点的权值大,距离远的点权值小. 2.计算量较大,每个待分类的样本都…
============================================================================================ <机器学习实战>系列博客是博主阅读<机器学习实战>这本书的笔记,包括对当中算法的理解和算法的Python代码实现 另外博主这里有机器学习实战这本书的全部算法源码和算法所用到的源文件,有须要的留言 ====================================================…
K近邻(KNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. kNN方法在类别决策时,只与极少量的相邻样本有关.由于kNN方法主要靠周围有限的邻近的…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
#encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as plt from os import listdir def makePhoto(returnMat,classLabelVector): #创建散点图 fig = plt.figure() ax = fig.add_subplot(111) #例如参数为349时,参数349的意思是:将画布分割成3行4…
1 机器学习处理流程: 2 机器学习分类: 有监督学习 主要用于决策支持,它利用有标识的历史数据进行训练,以实现对新数据的表示的预测 1 分类 分类计数预测的数据对象是离散的.如短信是否为垃圾短信,用户是否喜欢电子产品 常用方法: K近邻.朴素贝叶斯.决策树.SVM 2 回归 回归技术预测的数据对象是连续值.例如温度变化或时间变化.包括一元回归和多元回归,线性回归和非线性回归 常用方法: 线性回归.逻辑回归.岭回归 无监督学习 主要用于知识发现,在历史数据中发现隐藏的模式或内在结构 1 聚类 聚…
机器学习实战——读书笔记 书籍奉上…