caffe的损失函数】的更多相关文章

损失函数,一般由两项组成,一项是loss term,另外一项是regularization term. J=L+R 先说损失项loss,再说regularization项. 1. 分对得分1,分错得分0.gold standard 2. hinge loss(for softmargin svm),J=1/2||w||^2 + sum(max(0,1-yf(w,x))) 3. log los, cross entropy loss function in logistic regression…
Caffe学习笔记(二):Caffe前传与反传.损失函数.调优 在caffe框架中,前传/反传(forward and backward)是一个网络中最重要的计算过程:损失函数(loss)是学习的驱动,类似于视频编码中的率失真代价,是衡量学习的程度,或者说,学习的目的是找到一个网络权重的集合,使得损失函数最小:Solver是通过协调网络的前向推断计算和反向计算来对参数进行更新,从而达到减小loss的目的. 下面将对forward and backward.loss.solver分别进行介绍. 1…
Caffe框架下的图像回归测试 参考资料: 1. http://stackoverflow.com/questions/33766689/caffe-hdf5-pre-processing 2. http://corpocrat.com/2015/02/24/facial-keypoints-extraction-using-deep-learning-with-caffe/ 3. http://stackoverflow.com/questions/31774953/test-labels-f…
使用http://www.cnblogs.com/573177885qq/p/5804863.html中的图片进行训练和测试. 整个流程差不多,fine-tune命令: ./build/tools/caffe train -solver examples/money_test/fine_tune/solver.prototxt -weights models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel 因为是用别人训练好的…
关于caffe中的solver: cafffe中的sover的方法都有: Stochastic Gradient Descent (type: "SGD"), AdaDelta (type: "AdaDelta"), Adaptive Gradient (type: "AdaGrad"), Adam (type: "Adam"), Nesterov's Accelerated Gradient (type: "Nes…
Caffe(卷积神经网络框架)Caffe,全称Convolution Architecture For Feature Extraction caffe是一个清晰,可读性高,快速的深度学习框架.作者是贾扬清,加州大学伯克利的ph.D,现就职于FaceBook.caffe的官网是http://caffe.berkeleyvision.org/. Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作. Caffe是纯粹的C++/CUDA…
wangxiao@wangxiao-GTX980:~/Downloads/caffe-master$ make -j8find: `wangxiao/bvlc_alexnet/spl': No such file or directoryfind: `caffemodel': No such file or directoryfind: `wangxiao/bvlc_alexnet/0.77': No such file or directoryfind: `caffemodel': No su…
神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正要使用训练好的数据时,我们需要的是网络给我们输入结果,对于分类问题,我们需要获得分类结果,如下右图最后一层我们得到 的是概率,我们不需要训练及测试阶段的LOSS,ACCURACY层了. 下图是能过$CAFFE_ROOT/python/draw_net.py绘制$CAFFE_ROOT/models/caf…
一.深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1.学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间.步长的选择比较麻烦.步长越小,越容易得到局部最优化(到了比较大的山谷,就出不去了),而大了会全局最优 一般来说,前1000步,很大,0.1:到了后面,迭代次数增高,下降0.01,再多,然后再小一些. 2.权重 梯度消失的情况,就是当数值接近于正向∞,求导之后就更小的,约等于0,偏导为0 梯度爆炸,数值无限大 对于梯度消失现象:激活函数 Sigmo…
本文部分内容来源于CDA深度学习实战课堂,由唐宇迪老师授课 如果你企图用CPU来训练模型,那么你就疯了- 训练模型中,最耗时的因素是图像大小size,一般227*227用CPU来训练的话,训练1万次可能要超过1周的时间. 不同的网络结构,可能会有不同图片尺寸的需求,所以训练之前需要了解一下,在生成LMDB环节就直接符合上模型的数据要求. 如果你自己DIY了框架,那么不知道如何检验框架与通用框架比较,是否优质,可以去benchmarks网站,跟别人的PK一下:http://human-pose.m…