线性回归是分析一个变量与另外一个或多个变量(自变量)之间,关系强度的方法. 线性回归的标志,如名称所暗示的那样,即自变量与结果变量之间的关系是线性的,也就是说变量关系可以连城一条直线. 模型评估:量化预测的质量 https://scikit-learn.org/stable/modules/model_evaluation.html#model-evaluation 线性回归的 7种 预测质量方法, 1.导包, # 导包 import numpy as np import matplotlib.…
python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets import load_boston from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model i…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 9.预测功能 新增需要方法的预测功能:Auto-ARIMA预测.VAR预测.eviews9.0下载链接:[软件] EViews 9 的时代已经来临!(附安装包.升级包.破解补丁.教程) 一.Auto-ARIMA预测 Auto-ARIMA预测是基于ARIMA模型之上,系统的预测方法.Eviews 9提供了便捷方式,给研究者提供了一个一般模型预测的…
# coding: utf-8 # 利用 diabetes数据集来学习线性回归 # diabetes 是一个关于糖尿病的数据集, 该数据集包括442个病人的生理数据及一年以后的病情发展情况. # 数据集中的特征值总共10项, 如下: # 年龄 # 性别 #体质指数 #血压 #s1,s2,s3,s4,s4,s6  (六种血清的化验数据) #但请注意,以上的数据是经过特殊处理, 10个数据中的每个都做了均值中心化处理,然后又用标准差乘以个体数量调整了数值范围.验证就会发现任何一列的所有数值平方和为1…
classification_report的调用为:classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2, output_dict=False) y_true : 真实值y_pred : 预测值 from sklearn.metrics import classification_report truey = np.array([0,0,1,1,0,0]…
补充:https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-15-276 如果用arima的话,还不如使用随机森林... 原文地址:https://medium.com/open-machine-learning-course/open-machine-learning-course-topic-9-time-series-analysis-in-python-a270cb05e0b3 数据集样子: y ti…
梯度提升: from sklearn.ensemble import GradientBoostingClassifier gb=GradientBoostingClassifier(random_state=0) gb.fit(x_train,y_train) print("Accuracy on training set:{:.3f}".format(gb.score(x_train,y_train))) print("Accuracy on test set:{:.3f…
简介 ARIMA: AutoRegressive Integrated Moving Average ARIMA是两个算法的结合:AR和MA.其公式如下: 是白噪声,均值为0, C是常数. ARIMA的前半部分就是Autoregressive:, 后半部分是moving average:. AR实际上就是一个无限脉冲响应滤波器(infinite impulse resopnse), MA是一个有限脉冲响应(finite impulse resopnse),输入是白噪声. ARIMA里面的I指In…
前言 本篇我们将总结的算法为Microsoft时序算法的结果预测值,是上一篇文章微软数据挖掘算法:Microsoft 时序算法(5)的一个总结,上一篇我们已经基于微软案例数据库的销售历史信息表,利用Microsoft时序算法对其结果进行了预测,并且相应形成了折线预测图和模型依赖属性,有兴趣的同学可以点击查看,但是上篇文章的能给出的只是一个描述趋势的折线图,从图中我们能分析出的知识也只能通过语言描述,而这里面缺少更确切的数据支撑,作为一个凡事以数据说话的年代显然这是不够的,本篇我们将根据上一篇的预…
概述 今天要说一下机器学习中大多数书籍第一个讲的(有的可能是KNN)模型-线性回归.说起线性回归,首先要介绍一下机器学习中的两个常见的问题:回归任务和分类任务.那什么是回归任务和分类任务呢?简单的来说,在监督学习中(也就是有标签的数据中),标签值为连续值时是回归任务,标志值是离散值时是分类任务.而线性回归模型就是处理回归任务的最基础的模型. 形式 在只有一个变量的情况下,线性回归可以用方程:y = ax+b 表示.而如果有多个变量,也就是n元线性回归的形式如下: n元线性回归 在这里我们将截断b…
灰色预测的主要特点是只需要4个数据,就能解决历史数据少,序列的完整性以及可靠性低的问题,能将无规律的原始数据进行生成得到规律性较强的生成序列,易于检验 但缺点是只适合中短期的预测,且只适合指数级增长的预测. 在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据预处理后的数据序列称为生成列.对原始数据进行预处理,不是寻找它的统计规律和概率分布,而是将杂乱无章的原始数据列通过一定的方法处理,变成有规律的时间序列数据,即以数找数的规律,再建立动态模型. 灰色预测通过鉴别系统因素之间发展趋势…
目录 时间序列深度学习:状态 LSTM 模型预测太阳黑子 教程概览 商业应用 长短期记忆(LSTM)模型 太阳黑子数据集 构建 LSTM 模型预测太阳黑子 1 若干相关包 2 数据 3 探索性数据分析 4 回测:时间序列交叉验证 5 用 Keras 构建状态 LSTM 模型 结论 时间序列深度学习:状态 LSTM 模型预测太阳黑子 本文翻译自<Time Series Deep Learning: Forecasting Sunspots With Keras Stateful Lstm In R…
编者按:Hadoop于2006年1月28日诞生,至今已有10年,它改变了企业对数据的存储.处理和分析的过程,加速了大数据的发展,形成了自己的极其火爆的技术生态圈,并受到非常广泛的应用.在2016年Hadoop十岁生日之际,InfoQ策划了一个Hadoop热点系列文章,为大家梳理Hadoop这十年的变化,技术圈的生态状况,回顾以前,激励以后.本文是Cloudera资深工程师讲解Hadoop,让您一篇文章就能了解Hadoop的过去和未来. “昔我十年前,与君始相识.” ——白居易,<酬元九对新栽竹有…
摘要: 我们经常思考机器学习,深度学习,以至于人工智能给我们带来什么?在数据相对充足,足够真实的情况下,好的学习模型可以发现事件本身的内在规则,内在联系.我们去除冗余的信息,可以通过最少的特征构建最简单.误差最小的模型,以此将学习到的规则,逻辑应用到具体的场景中,帮助我们可以快速准确的处理某些繁琐重复的工作. 模型训练与在线预测服务.推荐算法四部曲.机器学习PAI实战.更多精彩,尽在开发者分会场 [机器学习PAI实战]—— 玩转人工智能之商品价格预测 [机器学习PAI实战]—— 玩转人工智能之你…
0. 引言 在这篇文章中,笔者希望和大家讨论一个话题,即未来趋势是否可以被精确或概率性地预测. 对笔者所在的网络安全领域来说,由于网络攻击和网络入侵常常变现出随机性.非线性性的特征,因此纯粹的未来预测是非常困难的.笔者希望通过对2019Nconv疫情的趋势预测问题的研究,搞清楚一个问题,即舆情的数据是否可以预测?如何预测? 同时我们将[疫情预测]和[网络安全的趋势预测]进行横向对比,阐述网络安全领域态势预测的主要技术挑战. 1. 我们为什么需要态势预测 在日益复杂的网络环境和动态变化的攻防场景下…
目录 1. 简介 2. 近几年发表的主要工具 1.DeepRT 2.Prosit 3. DIANN 4.DeepDIA 1. 简介 基于串联质谱的蛋白质组学大部分是依赖于数据库(database search)的bottom-up策略研究.也就是实际谱图和理论谱图进行匹配打分,从而实现肽段和蛋白的鉴定和定量.如果是DDA的数据,因为一张二级谱是一条肽段,直接将数据库理论酶切碎裂后的理论谱和实际谱图匹配即可.但如果是DIA的数据,因为二级谱是混合谱,即来源于很多肽段,而且碎片离子还会受到未碎裂的母…
离去年“马尔可夫链进行彩票预测”已经一年了,同时我也计划了一个彩票数据框架的搭建,分析和预测的框架,会在今年逐步发表,拟定了一个目录,大家有什么样的意见和和问题,可以看看,留言我会在后面的文章中逐步改善:彩票数据框架与分析预测总目录.同时这篇文章也是“[彩票]彩票预测算法(一):离散型马尔可夫链模型C#实现”的兄弟篇.所以这篇文章还有一个标题,应该是:[彩票]彩票预测算法(二):朴素贝叶斯分类器在足球胜平负预测中的应用及C#实现. 以前了解比较多的是SVM,RF,特征选择和聚类分析,实际也做过一…
一.预测 先来看看这样一个场景: 假如你手头有一套房子要出售,你咨询了房产中介.中介跟你要了一系列的数据,例如房子面积.位置.楼层.年限等,然后进行一系列计算后,给出了建议的定价. 房产中介是如何帮你定价的? "中介"通过他多年的"从业"经验,知道哪些因素会影响房子的价格,且知道各自的"影响"有多大,于是在接过"你的房子"时,他就能通过自已的经验计算出"价格"了. 当然,这个价格,不同的中介,得到的也不同.…
Kaggle网站流量预测任务第一名解决方案:从模型到代码详解时序预测 2017年12月13日 17:39:11 机器之心V 阅读数:5931   近日,Artur Suilin 等人发布了 Kaggle 网站流量时序预测竞赛第一名的详细解决方案.他们不仅公开了所有的实现代码,同时还详细解释了实现的模型与经验.机器之心简要介绍了他们所实现的模型与经验,更详细的代码请查看 GitHub 项目. GitHub 项目地址:https://github.com/Arturus/kaggle-web-tra…
https://mp.weixin.qq.com/s/JwRXBNmXBaQM2GK6BDRqMw 选自GitHub 作者:Artur Suilin 机器之心编译 参与:蒋思源.路雪.黄小天 近日,Artur Suilin 等人发布了 Kaggle 网站流量时序预测竞赛第一名的详细解决方案.他们不仅公开了所有的实现代码,同时还详细解释了实现的模型与经验.机器之心简要介绍了他们所实现的模型与经验,更详细的代码请查看 GitHub 项目. GitHub 项目地址:https://github.com…
一.背景 很多农民因为缺乏资金,在每年耕种前会向相关机构申请贷款来购买种地需要的物资,等丰收之后偿还.农业贷款发放问题是一个典型的数据挖掘问题.贷款发放人通过往年的数据,包括贷款人的年收入.种植的作物种类.历史借贷信息等特征来构建经验模型,通过这个模型来预测受贷人的还款能力. 本文借助真实的农业贷款业务场景,利用回归算法解决贷款发放业务. 线性回归,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛.本文通过农业贷款的历史发放情况,预测是否给预…
本例使用forecast包中自带的数据集wineind,它表示从1980年1月到1994年8月, 由葡萄酒生产商销售的容量不到1升的澳大利亚酒的总量.数据示意如下: #观察曲线簇 len=1993-1980+1 data0=wineind[1:12*len] range0=range(data0)+c(-100,100) plot(1:12,1:12,ylim=range0,col='white',xlab="月份",ylab="销量") for(i in 1:le…
使用基于Apache Spark的随机森林方法预测贷款风险   原文:Predicting Loan Credit Risk using Apache Spark Machine Learning Random Forests 作者:Carol McDonald,MapR解决方案架构师 翻译:KK4SBB 责编:周建丁(zhoujd@csdn.NET) 在本文中,我将向大家介绍如何使用Apache Spark的Spark.ml库中的随机森林算法来对银行信用贷款的风险做分类预测.Spark的spa…
2019 ICCV.CVPR.ICLR之视频预测读书笔记 作者 | 文永亮 学校 | 哈尔滨工业大学(深圳) 研究方向 | 视频预测.时空序列预测 ICCV 2019 CVP github地址:https://github.com/JudyYe/CVP ​ 这是卡耐基梅隆和facebook的一篇paper,这篇论文的关键在于分解实体预测再组成,我们观察到一个场景是由不同实体经历不同运动组成的,所以这里提出的方法是通过隐式预测独立实体的未来状态,同时推理它们之间的相互作用,并使用预测状态来构成未来…
本篇介绍时间序列预测常用的ARIMA模型,通过了解本篇内容,将可以使用ARIMA预测一个时间序列. 什么是ARIMA? ARIMA是'Auto Regressive Integrated Moving Average'的简称. ARIMA是一种基于时间序列历史值和历史值上的预测误差来对当前做预测的模型. ARIMA整合了自回归项AR和滑动平均项MA. ARIMA可以建模任何存在一定规律的非季节性时间序列. 如果时间序列具有季节性,则需要使用SARIMA(Seasonal ARIMA)建模,后续会…
ML.net已经进到了1.5版本.作为Microsoft官方的机器学习模型,你不打算用用?   一.前言 ML.net可以让我们很容易地在各种应用场景中将机器学习加入到应用程序中.这是这个框架很重要的一点. 通过ML.net,我们可以使用手中的可用数据,进行预测.分析.检测,而不需要进行过于复杂的编程. ML.net的核心,同样是机器学习模型.它采用同样的步骤,通过指定算法来训练模型,将输入数据转换为所需的预测数据. 更重要的是,ML.net基于.NET Core,这让它可以非常简单地跨平台,在…
前言:彩票是一个坑,千万不要往里面跳.任何预测彩票的方法都不可能100%,都只能说比你盲目去买要多那么一些机会而已. 已经3个月没写博客了,因为业余时间一直在研究彩票,发现还是有很多乐趣,偶尔买买,娱乐一下.本文的目的是向大家分享一个经典的数学预测算法的思路以及代码.对于这个马尔可夫链模型,我本人以前也只是听说过,研究不深,如有错误,还请赐教,互相学习. 1.马尔可夫链预测模型介绍 马尔可夫链是一个能够用数学方法就能解释自然变化的一般规律模型,它是由著名的俄国数学家马尔科夫在1910年左右提出的…
原文:[年终分享]彩票数据预测算法(一):离散型马尔可夫链模型实现[附C#代码] 前言:彩票是一个坑,千万不要往里面跳.任何预测彩票的方法都不可能100%,都只能说比你盲目去买要多那么一些机会而已. 已经3个月没写博客了,因为业余时间一直在研究彩票,发现还是有很多乐趣,偶尔买买,娱乐一下.本文的目的是向大家分享一个经典的数学预测算法的思路以及代码.对于这个马尔可夫链模型,我本人以前也只是听说过,研究不深,如有错误,还请赐教,互相学习. 1.马尔可夫链预测模型介绍[1] 马尔可夫链是一个能够用数学…
1 背景 前段时间京东公开了面向第二个十二年的战略规划,表示京东将全面走向技术化,大力发展人工智能和机器人自动化技术,将过去传统方式构筑的优势全面升级.京东Y事业部顺势成立,该事业部将以服务泛零售为核心,着重智能供应能力的打造,核心使命是利用人工智能技术来驱动零售革新. 1.1   京东的供应链 京东一直致力于通过互联网电商建立需求侧与供给侧的精准.高效匹配,供应链管理是零售联调中的核心能力,是零售平台能力的关键体现,也是供应商与京东紧密合作的纽带,更是未来京东智能化商业体布局中的核心环节. 个…
一.背景 心脏病是人类健康的头号杀手.全世界1/3的人口死亡是因心脏病引起的,而我国,每年有几十万人死于心脏病. 所以,如果可以通过提取人体相关的体侧指标,通过数据挖掘的方式来分析不同特征对于心脏病的影响,对于预测和预防心脏病将起到至关重要的作用.本文将会通过真实的数据,通过阿里云机器学习平台搭建心脏病预测案例. 二.数据集介绍 数据源: UCI开源数据集heart_disease 针对美国某区域的心脏病检查患者的体测数据,共303条数据.具体字段如下表: 字段名 含义 类型 描述 age 年龄…