URL:http://ydwen.github.io/papers/WenECCV16.pdf这篇论文主要的贡献就是提出了Center Loss的损失函数,利用Softmax Loss和Center Loss联合来监督训练,在扩大类间差异的同时缩写类内差异,提升模型的鲁棒性. 为了直观的说明softmax loss的影响,作者在对LeNet做了简单修改,把最后一个隐藏层输出维度改为2,然后将特征在二维平面可视化,下面两张图分别是MNIDST的train集和test集,可以发现类间差异比较明显,但…
原文: A Discriminative Feature Learning Approach for Deep Face Recognition 用于人脸识别的center loss. 1)同时学习每个类的深度特征的中心点 2)对深度特征和其对应的类中心的距离有一定的惩罚 提出的center loss函数在CNN中可以训练并且很容易优化. 联合softmax loss和center loss,可以同时增加类间分散程度(inter-class dispension)与类内紧凑程度(intra-cl…
url: https://kpzhang93.github.io/papers/eccv2016.pdf year: ECCV2016 abstract 对于人脸识别任务来说, 网络学习到的特征具有判别性是一件很重要的事情. 增加类间距离, 减小类内距离在人脸识别任务中很重要. 那么, 该如何增加类间距离, 减小类内距离呢? 通常, 我们使用 softmax loss 作为分类任务的loss, 但是, 单单依赖使用 softmax 监督学习到的特征只能将不同类别分开, 却无法约束不同类别之间的距…
center loss来自ECCV2016的一篇论文:A Discriminative Feature Learning Approach for Deep Face Recognition. 论文链接:http://ydwen.github.io/papers/WenECCV16.pdf 代码链接:https://github.com/davidsandberg/facenet 理论解析请参看 https://blog.csdn.net/u014380165/article/details/7…
Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach  2017.11.28 Introduction: 人脸属性的识别在社会交互,提供了非常广泛的信息,包括:the person’s identity, demographic (age, gender, and race), hair style, clothing, etc. 基于人脸属性识别的场景也越来越多,如:(i)video Surve…
ECCV-2010 Tutorial: Feature Learning for Image Classification Organizers Kai Yu (NEC Laboratories America, kyu@sv.nec-labs.com), Andrew Ng (Stanford University, ang@cs.stanford.edu) Place & Time: Creta Maris Hotel, Crete, Greece, 9:00 – 13:00, Septem…
Joint Detection and Identification Feature Learning for Person Search 2018-06-02 本文的贡献主要体现在: 提出一种联合的 检测 (person detection) 和 行人匹配(person matching) 的网络结构: 提出一种 Online Instance Matching loss function 以更有效的进行特征的学习: 提出一个大型的 person search 的 benchmark.…
Learning how to Active Learn: A Deep Reinforcement Learning Approach 2018-03-11 12:56:04 1. Introduction: 对于大部分 NLP 的任务,得到足够的标注文本来进行模型的训练是一个关键的瓶颈.所以,active learning 被引入到 NLP 任务中以最小化标注数据的代价.AL 的目标是通过识别一小部分数据来进行标注,以此来降低 cost,选来最小化监督模型的精度. 毫无疑问的是,AL 对于其…
论文题目<3-D Deep Learning Approach for Remote Sensing Image Classification> 论文作者:Amina Ben Hamida, Alexandre Benoit , Patrick Lambert, and Chokri Ben Amar, Senior Member , IEEE 论文发表年份:2018 网络简称:3D-CNN 发表期刊:IEEE Transactions on geoscience and remote sen…
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning b…