今天介绍 Siggraph 2004 年的一篇文章: Colorization using Optimization,利用优化的方法对灰度图像进行着色,这里用到了非常经典的泊松方程以及稀疏矩阵的线性优化.简单来说,就是对一张灰度图像先人为地进行着色,然后利用优化的方法,对其他的没有颜色的区域进行填充.这些处理都是在 YUV 颜色空间进行的. 给定一个 Y 通道的图像,我们希望基于一定的先验知识,恢复出图像的U, V 通道.这里的一个重要假设就是 对于相邻的两个像素,如果其亮度比较相似,那么其颜色…
一.K均值算法的优化目标 K-均值最小化问题,是要最小化所有的数据点与其所关联的聚类中心点之间的距离之和,因此 K-均值的代价函数(又称畸变函数 Distortion function)为: 其中…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM扩展到更多的数据集上. 1.基于最大间隔分隔数据 几个概念: 1.线性可分(linearly separable):对于图6-1中的圆形点和方形点,如果很容易就可以在图中画出一条直线将两组数据点分开,就称这组数据为线性可分数据 2.分隔超平面(separating hyperplane):将数据集分…
  小编都深深的震惊了,到底是谁那么好整理了那么多干货性的书籍.小编对此人表示崇高的敬意,小编不是文章的生产者,只是文章的搬运工. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen…
机器学习中的范数规则化之(二)核范数与规则项参数选择 zouxy09@qq.com http://blog.csdn.net/zouxy09 上一篇博文,我们聊到了L0,L1和L2范数,这篇我们絮叨絮叨下核范数和规则项参数选择.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 三.核范数 核范数||W||*是指矩阵奇异值的和,英文称呼叫Nuclear Norm.这个相对于上面火热的L1和L2来说,可能大家就会陌生点.那它是干嘛用的呢?霸气登场:约束Low-Rank(…
spark-2.0.2 机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库.旨在简化机器学习的工程实践工作,并方便扩展到更大规模.MLlib由一些通用的学习算法和工具组成,包括分类.回归.聚类.协同过滤.降维等,同时还包括底层的优化原语和高层的管道API. MLllib目前分为两个代码包: spark.mllib 包含基于RDD的原始算法API. spark.ml 则提供了基于DataFrames 高层次的API,可以用来构建机器学习管道. 我们推荐您使用spark.ml,…
Shogun网站上的关于主流机器学习工具包的比较: http://www.shogun-toolbox.org/page/features/   created last updated main language main focus shogun 1999 10-2013 C++ General Purpose ML Package with particular focus on large scale learning; Kernel Methods; Interfaces to var…
[本文链接:http://www.cnblogs.com/breezedeus/p/3496819.html,转载请注明出处] 从等式约束的最小化问题说起:                                                                                       上面问题的拉格朗日表达式为:                                             也就是前面的最小化问题可以写为:          …