Spark 的情感分析 本文描述了基于 Spark 如何构建一个文本情感分析系统.文章首先介绍文本情感分析基本概念和应用场景,其次描述采用 Spark 作为分析的基础技术平台的原因和本文使用到技术组件,然后介绍基于 Spark 如何构建文本情感分析系统,最后提出几种提高正确率的方法. 9 评论   IBM 公司在 2015 年对外宣告了一个新的科技和商务时代的来临—认知时代.这个巨大的转变,来自 IBM 对技术和商业领域的三个重要的洞察力[1].第一,这个世界被数据所充斥.第二,这个世界通过代码…
先主要摘自一篇中文Survey,http://wenku.baidu.com/view/0c33af946bec0975f465e277.html   4.2 情感分析的资源建设 4.2.1 情感分析的语料 除了4.1节中三个国际/国内评测所提供的语料外,不少研究单位和个人也提供了一定规模的语料. 1. 康奈尔大学(Cornell)提供的影评数据集(http://www.cs.cornell.edu/people/pabo/movie-review-data/):由电影评论组成,其中持肯定和否定…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:情感分析中对文本处理的数据的小技巧要求比较高,笔者在学习时候会为一些小技巧感到头疼不已. 主要包括以下内容: 1.批量读取txt字符文件(导入.文本内容逐行读取.加入文档名字). 2.文本清洗(一级清洗,去标点:二级清洗去内容:三级清洗,去停用词) 3.词典之间匹配(有主键join.词库匹配%in%) 4.分词之后档案id+label…
一.简介 实例: 电影评论.产品评论是positive还是negative 公众.消费者的信心是否在增加 公众对于候选人.社会事件等的倾向 预测股票市场的涨跌 Affective States又分为: emotion:短暂的情感,比如生气.伤心.joyful开心.害怕.羞愧.骄傲等 mood:漫无原因的低强度长时间持续的主观感觉变化,比如cheerful,gloomy阴郁.irritable急躁. interpersonal stance:人际关系中对另一个人的立场,比如友好的.友善的 atti…
使用在上一篇博客中训练好的wordvector 在这一节进行情感分析. 因为在上一节中得到的是一个词就是一个向量 所以一句话便是一个矩阵,矩阵的每一列表示一个词向量 情感分析的前提是已知一句话是 (超级消极,比较消极,中立,积极,非常积极)中的一类作为训练集分别用(0,1,2,3,4)进行表示 然后通过对每一句话的矩阵按列求均值,便得到一个维数固定的向量,用这个向量作为该句话的特征向量 然后将这个向量和该句话对应的label输入softmax层进行softmax回归计算. 最后训练得到的模型便是…
近期老师给我们安排了一个大作业,要求根据情感词典对微博语料进行情感分析.于是在网上狂找资料,看相关书籍,终于搞出了这个任务.现在做做笔记,总结一下本次的任务,同时也给遇到有同样需求的人,提供一点帮助. 1.情感分析含义 情感分析指的是对新闻报道.商品评论.电影影评等文本信息进行观点提取.主题分析.情感挖掘.情感分析常用于对某一篇新闻报道积极消极分析.淘宝商品评论情感打分.股评情感分析.电影评论情感挖掘.情感分析的内容包括:情感的持有者分析.态度持有者分析.态度类型分析(一系列类型如喜欢(like…
下载安装到实战详细步骤 NLTK下载安装 先使用pip install nltk 安装包 然后运行下面两行代码会弹出如图得GUI界面,注意下载位置,然后点击下载全部下载了大概3.5G. import nltk nltk.download()! 注意点:可能由于网络原因访问github卡顿导致,不能正常弹出GUI进行下载,可以自己去github下载 网址:https://github.com/nltk/nltk_data/tree/gh-pages/packages 下载成功后查看是否可以使用,运…
目录 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作 前言 NLP相关的文本预处理 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作 前言 之所以心血来潮想写这篇博客,是因为最近在关注NLP文本分类这类任务中的文本预处理工作,想总结一下自己的所学所想,老规矩,本博文记载仅供备忘与参考,不具备学术价值,本文默认使用python3编程(代码能力是屎山级别的,请谅解),默认文本为英文,代码主要使用Pytorch(博主老笨蛋了,之前一直执迷不悟用Keras,现在刚刚开始用torch,怎么说…
摘要 这篇短文的目的是分享我这几天里从头开始学习Python爬虫技术的经验,并展示对爬取的文本进行情感分析(文本分类)的一些挖掘结果. 不同于其他专注爬虫技术的介绍,这里首先阐述爬取网络数据动机,接着以豆瓣影评为例介绍文本数据的爬取,最后使用文本分类的技术以一种机器学习的方式进行情感分析.由于内容覆盖面巨大,无法详细道尽,这篇文章旨在给那些对相关领域只有少量或者没有接触的人一个认知的窗口,希望激发读者自行探索的兴趣. 以下的样本代码用Pyhton写成,主要使用了scrapy, sklearn两个…
前言:本文主要涉及知识点包括新浪微博爬虫.python对数据库的简单读写.简单的列表数据去重.简单的自然语言处理(snowNLP模块.机器学习).适合有一定编程基础,并对python有所了解的盆友阅读. 甩锅の声明 1.本数据节选自新浪热门微博评论,不代表本人任何观点 2.本人不接受任何非技术交流类批评指责(夸我可以) 3.本次分析结果因技术问题存在一定误差(是引入的包的问题,不是我的) 4.本次选取热门微博为一个月以前的(翻译一下:热点已经冷了,我只是个写教程的) 4.顶锅盖逃 继上次更完"国…