linkedhashmap中关于LRU算法的实现】的更多相关文章

//LinkedHashMap的一个构造函数,当参数accessOrder为true时,即会按照访问顺序排序,最近访问的放在最前,最早访问的放在后面 public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) { super(initialCapacity, loadFactor); this.accessOrder = accessOrder; } LRU是Least Recently Use…
java基础解析系列(四)---LinkedHashMap的原理及LRU算法的实现 java基础解析系列(一)---String.StringBuffer.StringBuilder java基础解析系列(二)---Integer java基础解析系列(三)---HashMap 这是我的博客目录,欢迎阅读 实验 遍历HashMap public static void main(String[] args) { Map<String, String> map=new HashMap<St…
MATLAB 中BP神经网络算法的实现 BP神经网络算法提供了一种普遍并且实用的方法从样例中学习值为实数.离散值或者向量的函数,这里就简单介绍一下如何用MATLAB编程实现该算法. 具体步骤   这里以一个普遍实用的简单案例为例子进行编程的说明. 假设一组x1,x2,x3的值对应一个y值,有2000组这样的数字,我们选择其中1900组x1,x2,x3和y作为样本,其余100组x1,x2,x3作为测试数据来验证.   首先需要读取这些数据,并把数据赋值给input 和 output . 我是把数据…
目录 概念 方法选择 实现方案(基于LinkedHashMap) 改进方案 1.LRU-K 2.Two queue 3.Multi Queue(MQ) LRU类算法对比 LRU 在 Redis 中的应用 概念 RU是Least Recently Used 的缩写,翻译过来就是"最近最少使用". LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小.也就是说,当限定的空间已存满数据时,应当把最久没有被访问到的数据淘汰. 方法选择 用一个数组来存…
传送门 此题让我们实现一个LRU的模板类.本题较简便且高效的写法是维护一个std::list和一个std::unordered_map. std::list 与 std::unordered_map 中存放的内容 std::list中存放各key,类型为K.链表中各键码存放的顺序是按照访问顺序存放的. std::unordered_map中以key为第一维,第二维为一个pair,其first和second分别为: first: 该key对应的value. second:该key在std::lis…
LRU全称是Least Recently Used,即最近最久未使用的意思.LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小.也就是说,当限定的空间已存满数据时,应当把最久没有被访问到的数据淘汰.解决的实际问题:当做数据缓存时,缓存的数据会随着时间的推移越来越多,如果没有缓存清除策略,那么会出现俩个问题:1.缓存越来越大挤爆内存.2.很多不使用的数据占据这内存空间,导致内存得不到有效利用.此场景使用LRU算法非常合适.LRU算法的主要思想: 1.设…
移动机器人智能的一个重要标志就是自主导航,而实现机器人自主导航有个基本要求--避障.之前简单介绍过Bug避障算法,但仅仅了解大致理论而不亲自动手实现一遍很难有深刻的印象,只能说似懂非懂.我不是天才,不能看几遍就理解理论中的奥妙,只能在别人大谈XX理论XX算法的时候,自己一个人苦逼的面对错误的程序问为什么... 下面开始动手来实现一下简单的Bug2避障算法.由于算法中涉及到机器人与外界环境的交互,因此需要选择一个仿真软件.常用的移动机器人仿真软件主要有Gazebo.V-rep.Webots.MRD…
Java排序一,冒泡排序! 刚刚开始学习Java,但是比较有兴趣研究算法.最近看了一本算法笔记,刚开始只是打算随便看看,但是发现这本书非常不错,尤其是对排序算法,以及哈希函数的一些解释,让我非常的感兴趣,就记录一下自己的学习总结! 排序:将一些无序的元素按照某种规则排列的过程就叫"排序".在生活中,有时候可能是一些少量的数据 ,,,但是 ,也有可能是 一些的大数据 .排序是非常基础和重要的算法,有着广泛的理论基础和实践需求.(加粗部分摘自<算法笔记>原话!:-D) 一个排序…
图像边缘信息主要集中在高频段,通常说图像锐化或检测边缘,实质就是高频滤波.我们知道微分运算是求信号的变化率,具有加强高频分量的作用.在空域运算中来说,对图像的锐化就是计算微分.由于数字图像的离散信号,微分运算就变成计算差分或梯度.图像处理中有多种边缘检测(梯度)算子,常用的包括普通一阶差分,Robert算子(交叉差分),Sobel算子等等,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值,得到边缘图像. Canny边缘检测算子是一种多级检测算法.1986年由J…
在SSE图像算法优化系列五:超高速指数模糊算法的实现和优化(10000*10000在100ms左右实现) 一文中,我曾经说过优化后的ExpBlur比BoxBlur还要快,那个时候我比较的BoxBlur算法是通过积分图+SSE实现的,我在09年另外一个博客账号上曾经提供过一篇这个文章彩色图像高速模糊之懒惰算法,里面也介绍了一种快速的图像模糊算法,这个算法的执行时间基本也是和半径无关的.在今年的SSE优化学习之路上我曾经也考虑过将该算法使用SSE实现,但当时觉得这个算法逐像素同时逐行都是前后依赖的(…