R语言统计词频 画词云】的更多相关文章

原始数据: 程序: #统计词频 library(wordcloud) # F:/master2017/ch4/weibo170.cut.txt text <- readLines("F:/master2017/ch4/weibo170.cut.txt") txtList <- lapply(txt, strsplit," ") txtChar <- unlist(txtList) txtChar <- gsub(pattern = "…
1. 词频统计: import jieba txt = open("threekingdoms3.txt", "r", encoding='utf-8').read() words = jieba.lcut(txt) counts = {} for word in words: if len(word) == 1: continue else: counts[word] = counts.get(word,0) + 1 items = list(counts.ite…
附注:不要问我为什么写这么快,是16年写的. R的优点:免费.界面友好(个人认为没有matlab友好,matlab在我心中就是统计软件中极简主义的代表).小(压缩包就几十M,MATLAB.R2009b的压缩包是1.46G).包多(是真的多,各路好友会经常上传新的包). R的麻烦之处:经常升级,是经常,非常经常,这就导致你在加载一个包之前需要考虑这个包要在R的哪个版本上才能使用,而往往做一件事情都要加载10个包左右,一般比较方便的做法就是先升级到最新版,因为只有小部分的包在新版本上不能用. 言归正…
画词云首先需要安装wordcloud(生成词云)和jieba(中文分词). 先来说说wordcloud的安装吧,真是一波三折.首先用pip install wordcloud出现错误,说需要安装Visual C++ 14.0.折腾半天安装好Visual C++后,还是不行,按网上指点,下载第三方包安装(https://www.lfd.uci.edu/~gohlke/pythonlibs/#wordcloud).安装是成功了,可是在anaconda里导入的时候又出现了问题,说是"no module…
通过R语言统计考研英语(二)单词出现频率 大家对英语考试并不陌生,首先是背单词,就是所谓的高频词汇.厚厚的一本单词,真的看的头大.最近结合自己刚学的R语言,为年底的考研做准备,想统计一下最近考研英语(二)真正单词出现的频率次数. 整体思路: 收集数据-->整理数据-->统计分析-->输出结果 使用工具: `Rstudio,文本编辑器,CSV` 涉及到的包: "jiebaR"(中文分词引擎),“plyr", 第一步收集数据: 从网络搜索2013-2018考研英…
适合阅读人群:有一定的数学基础. 这几篇文章是16年写的,之前发布在个人公众号上,公众号现已弃用.回过头来再看这几篇文章,发现写的过于稚嫩,思考也不全面,这说明我又进步了,但还是作为学习笔记记在这里了,方便以后自己经常查阅. 支持向量机(SVM)理论总结系列.线性可分(附带R程序案例:用体重和心脏重量来预测一只猫的性别) R系列:关联分析:某电商平台的数据:做捆绑销售和商品关联推荐 R系列:分词.去停用词.画词云(词云形状可自定义) end!…
网上大多数词云的代码都是基于原始文本生成,这里写一个根据词频生成词云的小例子,都是基于现成的函数. 另外有个在线制作词云的网站也很不错,推荐使用:WordArt 安装词云与画图包 pip3 install wordcloud pip3 install matplotlib word_cloud.py(生成词云的程序) from wordcloud import WordCloud import matplotlib.pyplot as plt # 生成词云 def create_word_clo…
1.利用jieba分词,排除停用词stopword之后,对文章中的词进行词频统计,并用matplotlib进行直方图展示 # coding: utf-8 import codecs import matplotlib.pyplot as plt import jieba # import sys # reload(sys) # sys.setdefaultencoding('utf-8') from pylab import mpl mpl.rcParams['font.sans-serif']…
一. 统计学习概述 统计学习是指一组用于理解数据和建模的工具集.这些工具可分为有监督或无监督.1.监督学习:用于根据一个或多个输入预测或估计输出.常用于商业.医学.天体物理学和公共政策等领域.2.无监督学习:有输入变量,但没有输出变量,可以从这些数据中学习潜在关系和数据结构.以下简单的用3个数据集来说明. 1.工资数据 我们希望了解雇员的年龄.教育和年份对他的工资之间的联系.下图是对这三个因素的一个分析和统计. 左图:工资随着年龄的增长而增加,但在大约60岁之后又下降了.蓝线提供了对该年龄段平均…
from wordcloud import WordCloud import matplotlib.pyplot as plt import jieba # 生成词云 def create_word_cloud(filename): with open('hongloumong.txt',encoding='utf-8') as f: text = f.read() wordlist = jieba.cut(text, cut_all=True) # 结巴分词 wl = " ".joi…