1. 动机一:数据压缩 第二种类型的 无监督学习问题,称为 降维.有几个不同的的原因使你可能想要做降维.一是数据压缩,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快我们的学习算法. 但首先,让我们谈论 降维是什么.作为一种生动的例子,我们收集的数据集,有许多,许多特征,我绘制两个在这里. 将数据从二维降一维: 将数据从三维降至二维: 这个例子中我们要将一个三维的特征向量降至一个二维的特征向量.过程是与上面类似的,我们将三维向量投射到一个二维的平面上,强迫使得所…
10. Dimensionality Reduction Content  10. Dimensionality Reduction 10.1 Motivation 10.1.1 Motivation one: Data Compression 10.2.2 Motivation two: Visualization 10.2 Principal Component Analysis 10.2.1 Problem formulation 10.2.2 Principal Component An…
降维(Dimensionality Reduction) 降维的目的:1 数据压缩 这个是二维降一维 三维降二维就是落在一个平面上. 2 数据可视化 降维的算法只负责减少维数,新产生的特征的意义就必须由我们自 己去发现了. 主成分分析(PCA)是最常见的降维算法. 在 PCA 中,我们要做的是找到一个方向向量(Vector direction),当我们把所有的数据 都投射到该向量上时,我们希望投射平均均方误差能尽可能地小. 主成分分析与线性回归是两种不同的算法.主成分分析最小化的是投射误差(Pr…
数据降维(Dimensionality reduction) 应用范围 无监督学习 图片压缩(需要的时候在还原回来) 数据压缩 数据可视化 数据压缩(Data Compression) 将高维的数据转变为低维的数据, 这样我们存储数据的矩阵的列就减少了, 那么我们需要存储的数据就减少了 数据可视化 数据可视化是非常重要的, 通过可视化数据可以发现数据的规律, 但是大多数时候我们到的数据是高维度的, 可视化很困难, 采用数据降维可以将数据降到二维进行数据可视化 加快机器学习算法的速度 维度少了程序…
降维(Dimensionality Reduction) 动机一:数据压缩(Motivation I : Data Compression) 数据压缩允许我们压缩数据,从而使用较少的计算机内存或磁盘空间,还会加快算法的学习速度. 下面举例说明下降维是什么? 在工业上,往往有成百上千个特征.比如,可能有几个不同的工程团队,一个团队给了你二百个特征,第二个团队给了你另外三百个的特征,第三团队给了你五百个特征,一千多个特征都在一起,那么实际上,如果你想去追踪一下你所知道的那些特征会变得相当困难,而你又…
http://blog.csdn.net/pipisorry/article/details/49231919 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 推荐系统Recommendation System之降维Dimensionality Reduction {博客内容:推荐系统有一种推荐称作隐语义模型(LFM, latent factor model)推荐,这种推荐将在下一篇博客中讲到.这篇博客主要讲隐语义模型…
14.1  动机一:数据压缩 14.2  动机二:数据可视化 14.3  主成分分析问题 14.4  主成分分析算法 14.5  选择主成分的数量 14.6  重建的压缩表示 14.7  主成分分析法的应用建议 14.1  动机一:数据压缩…
1. 聚类(Clustering) 1.1 无监督学习: 简介 在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,在这里的监督学习中,我们有一系列标签,我们需要据此拟合一个假设函数.与此不同的是,在非监督学习中,我们的数据没有附带任何标签,我们拿到的数据就是这样的: 在非监督学习中,我们需要将一系列无标签的训练数据,输入到一个算法中,然后我们告诉这个算法,快去为我们找找这个数据的内在结构给定数据.我们可能需要某种算法帮助我们寻找一种结构.图上的数…
1. 优化目标 在监督学习中,许多学习算法的性能都非常类似,因此,重要的不是你该选择使用学习算法A还是学习算法B,而更重要的是,应用这些算法时,所创建的大量数据在应用这些算法时,表现情况通常依赖于你的水平.比如:你为学习算法所设计的 特征量的选择,以及如何选择正则化参数,诸如此类的事.还有一个更加强大的算法广泛的应用于工业界和学术界,它被称为支持向量机(Support Vector Machine).与逻辑回归和神经网络相比,支持向量机,或者简称SVM,在学习复杂的非线性方程时提供了一种更为清晰…
14.1  动机一:数据压缩 14.2  动机二:数据可视化 14.3  主成分分析问题 14.4  主成分分析算法 14.5  选择主成分的数量 14.6  重建的压缩表示 14.7  主成分分析法的应用建议 14.1  动机一:数据压缩 14.2  动机二:数据可视化 14.3  主成分分析问题 14.4  主成分分析算法 14.5  选择主成分的数量 14.6  重建的压缩表示 14.7  主成分分析法的应用建议…