首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
[物理学与PDEs]第1章 电动力学
】的更多相关文章
[物理学与PDEs]第1章 电动力学
[物理学与PDEs]第1章第1节 引言 [物理学与PDEs]第1章第2节 预备知识 2.1 Coulomb 定律, 静电场的散度与旋度 [物理学与PDEs]第1章第2节 预备知识 2.2 Ampere-Biot-Savart 定律, 静磁场的散度与旋度 [物理学与PDEs]第1章第2节 预备知识 2.3 Faraday 电磁感应定律 [物理学与PDEs]第1章第3节 真空中的 Maxwell 方程组, Lorentz 力 3.1 真空中的 Maxwell 方程组 [物理学与PDEs]第1章第3节…
[物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDEs]第1章习题4 偶极子的极限电势 [物理学与PDEs]第1章习题5 偶极子的电场强度 [物理学与PDEs]第1章习题6 无限长载流直线的磁场 [物理学与PDEs]第1章习题7 载流线圈的磁场 [物理学与PDEs]第1章习题8 磁场分布 $\ra$ 电流分布 [物理学与PDEs]第1章习题9 磁偶极…
[物理学与PDEs]第2章 流体力学
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.1 预备知识 [物理学与PDEs]第2章第1节 理想流体力学方程组 1.2 理想流体力学方程组 [物理学与PDEs]第2章第1节 理想流体力学方程组 1.3 理想流体力学方程组的数学结构 [物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组 [物理学与PDEs]第2章第2节 粘性流体力学方程组 2.1 引言 [物理学与PDEs]第2章第2节 粘性流体力学方程组 2.2 应力张量 [物理学与PDEs]第2章第…
[物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 [物理学与PDEs]第2章习题4 习题 3 的变分 [物理学与PDEs]第2章习题5 正应力的平均值 [物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组 [物理学与PDEs]第2章习题7 一维不可压理想流体的求解 [物理学与PDEs]第2章习题8 一维定常粘性不可压缩流体的…
[物理学与PDEs]第3章 磁流体力学
[物理学与PDEs]第3章第1节 等离子体 [物理学与PDEs]第3章第2节 磁流体力学方程组 2.1 考虑到导电媒质 (等离子体) 的运动对 Maxwell 方程组的修正 [物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正 [物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组 [物理学与PDEs]第3章第2节 磁流体力学方程组 2.4 不可压情形的磁流体力学方程组 [物理学与PDEs]第3章第3节 电导率 σ 为无穷时的…
[物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程 [物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程 [物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构 [物理学与PDEs]第3章习题6 Lagrange 坐标下的一维理想磁流体力学方程组的数学结构 [物理学与PDEs]第3章习题7 快.慢及A…
[物理学与PDEs]第4章 反应流体力学
[物理学与PDEs]第4章第1节 引言 [物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组 [物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约 [物理学与PDEs]第4章第2节 反应流体力学方程组 2.3 混合气体状态方程 [物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构 [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.1 一维反应流体力学方程组 [物理学与PD…
[物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构 [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件…
[物理学与PDEs]第5章 弹性力学
[物理学与PDEs]第5章第1节 引言 [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量 [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量 [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量 [物理学与PDEs]第5章第3节 守恒定律, 应力张量 [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系 [物理学与PDEs]第5章第5节 弹性动力学方程组及…
[物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs]第5章习题4 广义 Hookean 定律的张量的对称性 [物理学与PDEs]第5章习题5 超弹性材料中客观性假设的贮能函数表达 [物理学与PDEs]第5章习题6 各向同性材料时强椭圆性条件的等价条件 物理学与PDEs]第5章习题7 各向同性材料时稳定性条件的等价条件 [物理学与PDEs]第5章习题…
[物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理量 (下一章讨论). 3. 弹性体: 在荷载作用下产生弹性形变, 而撤去荷载后变形立即消失, 无题恢复原来的状态. 4. 本构关系: 物体的变形与应力之间的某种关系. 5. 弹性理论 $$\beex \bea\mbox{弹性理论}\sedd{\ba{ll} \mbox{线性弹性理论}\\ \m…
[物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 (见第二章 $\S 4$), 并证明越过强间断线, 函数 $Z$ 保持连续. 解答: (1) 具守恒律形式的一维反应流动力学方程组为 $$\beex \bea \cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(…
[物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一种是爆炸 (detonation): 火焰以 $\geq 2000\ m/s$ 的速度向前传播, 此时, Chapman (1899) 与 Jouquet (1905) 认为化学反应过程是瞬时发生并完成的, 即有一波前 (wavefront) 进入未燃气体, 并瞬时地将它变成已燃气体. 3. 本章…
[物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程
设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1}{\sigma \mu_0}\Div{\bf A}=0, \eex$$ 则方程 (2. 32) 可写为如下的形式: $$\bex \cfrac{\p {\bf A}}{\p t}={\bf u}\times\rot{\bf A}+\cfrac{1}{\sigma\mu_0}\lap{\bf A}.…
[物理学与PDEs]第1章第1节 引言
1. 电动力学研究的对象是电磁场, 研究电磁场的基本属性---运动规律及它和带电物质的相互作用. 2. 场, 物质的一种存在方式. 3. Maxwell 方程组是电动力学中的基本方程, 是一切有关电磁场讨论的基础和出发点.…
[物理学与PDEs]第5章习题10 多凸函数一个例子
证明函数 $$\bex \hat W({\bf F})=\sedd{\ba{ll} \cfrac{1}{\det{\bf F}},&if\ \det{\bf F}>0,\\ +\infty,&if\ \det{\bf F}\leq 0 \ea} \eex$$ 是多凸的. 证明: 由 $$\bex f(x)=\cfrac{1}{x}\ra f'(x)=\cfrac{-1}{x^2}\ra f''(x)=\cfrac{2}{x^3} \eex$$ 知 $$\bex \cfrac{\rd…
[物理学与PDEs]第5章习题9 伴随矩阵的特征值
设 $3\times 3$ 阵 ${\bf A}$ 的特征值为 $\lm_1,\lm_2,\lm_3$, 证明 $\cof {\bf A}$ 的特征值为 $$\bex \lm_2\lm_3,\quad \lm_3\lm_1,\quad \lm_1\lm_2. \eex$$ 证明: 证明: 由扰动法, 不妨设 ${\bf A}$ 可逆, 而 $$\beex \bea 0&=|\lm_i{\bf I}-{\bf A}|\cdot|\cof {\bf A}|\\ &=|\lm_i\cof{\b…
[物理学与PDEs]第5章习题7 各向同性材料时稳定性条件的等价条件
在线性弹性时, 证明各向同性材料, 稳定性条件 (5. 27) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+\cfrac{2}{3}\mu>0. \eex$$ 证明: (1) 写出 $$\beex \bea \sum_{i,j,k,l} a_{ijkl}e_{ij}e_{kl} &=\sum_{i,j,k,l}\sez{ \lm \delta_{ij}\delta_{kl} +\mu\sex{ \delta_{ik}\delta_{jl} +\de…
[物理学与PDEs]第5章习题6 各向同性材料时强椭圆性条件的等价条件
在线性弹性时, 证明各向同性材料, 强椭圆性条件 (5. 6) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+2\mu>0. \eex$$ 证明: (1) 对各向同性材料, $$\beex \bea a_{ijkl}&=\lm\delta_{ij}\delta_{kl} +\mu\sex{\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}},\\ \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k…
[物理学与PDEs]第5章习题5 超弹性材料中客观性假设的贮能函数表达
设超弹性材料的贮能函数 $\hat W$ 满足 (4. 19) 式, 证明由它决定的 Cauchy 应力张量 ${\bf T}$ 满足各向同性假设 (4. 7) 式. 证明: 若贮能函数 $W$ 满足 ``$\hat W({\bf F}{\bf Q})=W({\bf F})$ 对任意正交阵 ${\bf Q}$'', 则 $$\beex \bea p_{ij}({\bf F})&=\cfrac{\p \hat W({\bf F})}{\p f_{ij}}\\ &=\cfrac{\p \hat…
[物理学与PDEs]第5章习题4 广义 Hookean 定律的张量的对称性
设材料是超弹性的, 并设参考构形为自然状态, 证明由线性化得到的张量 ${\bf A}=(a_{ijkl})=\sex{2\cfrac{\p \bar p_{ij}}{c_{kl}}}$ 具有以下的对称性: $$\bex a_{ijkl}=a_{klij}. \eex$$ 证明: 注意到 $$\beex \bea {\bf C}={\bf F}^T{\bf F}&\ra c_{mn}=\sum_t f_{tm}f_{tn}\\ &\ra \cfrac{\p c_{mn}}{\p f_{kl…
[物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性
试证明: 在物质描述下, 动量矩守恒定律等价于第二 Piola 应力张量的对称性. 证明: 由 $$\beex \bea \int_{G_t}\rho\sex{{\bf y}\times\cfrac{\rd {\bf v}}{\rd t}}\rd y &=\int_{G_0} \rho_0\sex{{\bf y}\times\cfrac{\p {\bf v}}{\p t}}\rd x,\\ \int_{S_t} ({\bf y}\times{\bf \sigma})\rd S_t&=\in…
[物理学与PDEs]第5章习题2 Jacobian 的物质导数
验证 (3. 6) 式, 即证明 $$\bex \cfrac{\rd J}{\rd t}=J\Div_y {\bf v}. \eex$$ 证明: $$\beex \bea \cfrac{\rd J}{\rd t} &=\cfrac{\rd }{\rd t}|{\bf F}|\\ &=\cfrac{\rd }{\rd t} \sum_{j_1\cdots j_n}(-1)^{\tau(j_1\cdots j_n)} f_{1j_1}\cdots f_{nj_n}\\ &=\sum_{…
[物理学与PDEs]第5章习题1 矩阵的极分解
证明引理 2. 1. 证明: (1) 先证明存在正交阵 ${\bf P},{\bf Q}$ 及对角阵 ${\bf D}$ 使得 $$\bex {\bf F}={\bf P}{\bf D}{\bf Q}. \eex$$ 事实上, 由 ${\bf F}$ 可逆知 ${\bf F}^T{\bf F}$ 正定, 而存在正交阵 ${\bf Q}$, 使得 $$\bex {\bf F}^T{\bf F}={\bf Q}^T\diag(\lm_1,\cdots,\lm_n){\bf Q},\quad(\lm…
[物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cfrac{\p ^2u_k}{\p x_j\p x_l}=\rho_0b_i,\quad i=1,2,3. \eee$$ 2. (Korn 不等式) 设 $\Omega\subset{\bf R}^3$ 为有界区域, 则 $$\bex \exists\ C_0>0,\st \int_\Omega…
[物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\rho_0{\bf b}\\ &=\rho_0\cfrac{\p}{\p t}\sex{\cfrac{\p{\bf u}}{\p t}} -\Div_x({\bf A}{\bf E})-\rho_0{\bf b}\quad\sex{{\bf u}={\bf y}-{\bf x}}\\ &=\rh…
[物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\bf T}({\bf x},{\bf F}({\bf x})), \eex$$ 则称材料是 (Cauchy) 弹性的; 这里 $\hat {\bf T}$ 称为响应函数. 若再 ${\bf T}({\bf y})=\hat{\bf T}({\bf F}({\bf x}))$, 则称弹性体是齐次的,…
[物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应力 1. 弹性体所受荷载中的外力部分有体积力 ${\bf b}$, 表面力 ${\bf \tau}$. 2. 在荷载的作用下, 弹性体发生变形. $M$ 处 ${\bf\nu}$ 方向的应力向量 $$\bex {\bf \sigma} =\lim_{{\bf\nu}\perp\lap S\to…
[物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$$ 3. ${\bf C}$ 的表示: $$\beex \bea {\bf C}&={\bf F}^T{\bf C}=[{\bf I}+(\n{\bf u})^T]\cdot [{\bf I}+\n {\bf u}]\\ &={\bf I}+\n{\bf u}+(\n{\bf u})^T+(…
[物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf R}{\bf U}={\bf V}{\bf R}. \eex$$ 此称为 ${\bf F}$ 的极分解. 证明: (1) 先证明存在正交阵 ${\bf P},{\bf Q}$ 及对角阵 ${\bf D}$ 使得 $$\bex {\bf F}={\bf P}{\bf D}{\bf Q}. \eex$…