问题描述 BZOJ2301 LG2522 积性函数 若函数 \(f(x)\) 满足对于任意两个最大公约数为 \(1\) 的数 \(m,n\) ,有 \(f(mn)=f(m) \times f(n)\),则称 \(f(x)\) 为积性函数. 狄利克雷卷积和莫比乌斯函数 今天 zzk 神仙讲了一下狄利克雷卷积.数论分块和莫比乌斯反演. 几个数论函数 \[1(x)=1\] \[id(x)=x\] \[id^k(x)=x^k\] \[\varepsilon(x)=\begin{cases}1&x=1\\…
Problem b Time Limit: 50 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数. Sample Inp…
「HAOI2011」Problem c 传送门 由于这道题本人讲得不好,可以参考这位dalao的博客 我可就直接上代码了... 参考代码: /*-------------------------------- Code name: D.cpp Author: The Ace Bee This code is made by The Ace Bee --------------------------------*/ #include <cstdio> #include <cstring&…
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] \[=\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{i j}{\mathrm{gcd}(i, j)}\] \[=\sum_{g=1}^{n} \sum_{i=1}^{n/g} \s…
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对.q组询问 分析 我们要求的是 \[\sum_{p \in P} \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=p]\](大写P表示质数集合) 根据\(kgcd(i,j)=gcd(ki,kj)\), \[原式=\sum_{p \in P} \sum_{i=1}^{\lfloo…
题面: 传送门 有洛谷就尽量放洛谷链接呗,界面友好一点 思路: 和HDU1695比较像,但是这一回有50000组数据,直接莫比乌斯反演慢慢加的话会T 先解决一个前置问题:怎么处理a,c不是1的情况? 很简单,容斥原理搞之 我们设f(x,y)代表gcd(i,j)==e(1<=i<=x,1<=j<=y)的无序数对(i,j)的个数 那么本题答案相当于f(d,b)-f(c-1,b)-f(a-1,d)+f(a-1,c-1) 再来看反演超时的问题 我们注意到原反演过程中,f(1)==mu(i)…
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 2 2 5 1…
手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Luogu)https://www.luogu.org/problem/show?pid=3455 (BZOJ)http://www.lydsy.com/JudgeOnline/problem.php?id=1101 题目大意: 有t次询问(\(t\le5e4\)), 每次给定a,b,d, 询问有多少对…
正解:莫比乌斯反演 解题报告: 传送门! 首先这题刚看到就很,莫比乌斯反演嘛,和我前面写了题解的那个一模一样的,所以这儿就不讲这前边的做法辣QAQ 但是这样儿还有个问题,就现在已知我每次都是要O(n)地做的,然后他还有Q个问题,这样复杂度显然就假了,就要想办法优化QAQ 这时候考虑到我们已经搞出来要求的式子长这样儿:∑μ(i)*⌊m/i,n/i⌋,这就很,整除分块昂! 所以预处理μ的时候顺便搞下前缀和,整除分块就能过去辣! #include<bits/stdc++.h> using names…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: 在预处理的筛中也犯了愚蠢的错误...总之全仰仗 Narh 提点了... 所以具体题解就看这里咯:https://www.cnblogs.com/Narh/p/9740786.html 代码如下: #include<iostream> #include<cstdio> #include…