Max answer(单调栈+ST表)】的更多相关文章

Max answer https://nanti.jisuanke.com/t/38228 Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values in the interval, multiplied by the smallest value in the interval. Now she is planning to find the max…
题目 一年一度的"幻影阁夏日品酒大会"隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发"首席品 酒家"和"首席猎手"两个奖项,吸引了众多品酒师参加.在大会的晚餐上,调酒师Rainbow调制了 n 杯鸡尾酒. 这 n 杯鸡尾酒排成一行,其中第 i 杯酒 (1≤i≤n) 被贴上了一个标签 s_i ,每个标签都是 26 个小写英文字母 之一.设 Str(l,r) 表示第 l 杯酒到第 r 杯酒的 r-l+1 个标签顺次连接构成的字符串.若…
题面 题意:一个5e5的数组,定义一个区间的值为 这个区间的和*这个区间的最小值,注意数组值有负数有正数,求所有区间中最大的值 题解:如果全是正数,那就是原题 POJ2796 单调栈做一下就ok 我们现在有负数,考虑这段区间,他的和必须是负数,由于导致和为负数,最小值一定也是负数, 那对于这样一个和为负的区间进行扩展的时候,遇见下一个数,是负数,我们一定会扩展,无论这个负数大小 遇见下一个是正数,如果和没有变正,那就可以继续扩展下去(不更新答案罢了) 所以我们对于那些和为负的区间,单独统计一下答…
题目链接:https://nanti.jisuanke.com/t/38228 题目大意:一个区间的值等于该区间的和乘以区间的最小值.给出一个含有n个数的序列(序列的值有正有负),找到该序列的区间最大值. 样例输入: 5 1 2 3 4 5 样例输出: 36 解题思路:如果序列的值全部为正值的话,可以说很简单,用一个单调栈加前缀和就可以了直接a.但是区间中存在负值,这个问题就变得复杂多了. 首先我们可以用两次单调栈,在O(n)的时间内,对于每个a[i]找到一个最大区间[ l[i] , r[i]…
题目链接:https://nanti.jisuanke.com/t/38228 Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values in the interval, multiplied by the smallest value in the interval. Now she is planning to find the max value…
Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个询问,我们给出若干个后缀(以其在S中出现的起始位置来表示),求这些后缀两两之间的LCP(LongestCommonPrefix)的长度之和.一对后缀之间的LCP长度仅统计一遍. Input 第一行两个正整数n,m,分别表示S的长度以及询问的次数. 接下来一行有一个字符串S. 接下来有m组询问,对于每一组询问,均按照以下格式在一行内给出: 首先是…
题目链接:https://nanti.jisuanke.com/t/38228 题意:在给出的序列里面找一个区间,使区间最小值乘以区间和得到的值最大,输出这个最大值. 思路:我们枚举每一个数字,假设是a[i],那么我们就要找一个包含a[i]的区间,并且这个区间里面的最小值就是a[i],使a[i]乘以这个区间的区间和最大,一直更新这个最大值就可以了. 要保证区间最小值为a[i],那么就要找下标i左边第一个小于a[i]的数字所在下标和右边第一个小于a[i]的数字下标,我们在这两个下标围成的区间里面找…
题目链接 题意:求一个序列的最大的(区间最小值*区间和) 线段树做法:用单调栈求出每个数两边比它大的左右边界,然后用线段树求出每段区间的和sum.最小前缀lsum.最小后缀rsum,枚举每个数a[i],设以a[i]为最小值的区间为[l,r] 若a[i]>0,则最优解就是a[i]*([l,r]的区间和),因为[l,r]上的数都比a[i]大. 若a[i]<0,则最优解是a[i]*([l,i-1]上的最小后缀+a[i]+[i+1,r]上的最小前缀),在线段树上查询即可. 复杂度$O(nlogn)$…
题目链接  BZOJ4540 考虑莫队算法. 这题难在$[l, r]$到$[l, r+1]$的转移. 根据莫队算法的原理,这个时候答案应该加上 $cal(l, r+1) + cal(l+1, r+1) + cal(l+2, r+1) + ... + cal(r+1, r+1)$ $cal(l, r)$表示$a[l], a[l+1], a[l+2], ..., a[r]$中的最小值. 我们先求出$[l, r +1]$ 这些数中的最小值$a[x]$ 那么$cal(l, r+1) + cal(l+1,…
Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-1,ar.若1≤l≤s≤t≤r≤n,则称a[s:t]是a[l:r]的子序列.现在有q个询问,每个询问给定两个数l和r,1≤l≤r≤n,求a[l:r]的不同子序列的最小值之和.例如,给定序列5,2,4,1,3,询问给定的两个数为1和3,那么a[1:3]有6个子序列a[1:1],a[2:2],a[3:3],a[1:2],a[2:3],a[1:3…