mapreduce join】的更多相关文章

MapReduce Join 对两份数据data1和data2进行关键词连接是一个很通用的问题,如果数据量比较小,可以在内存中完成连接. 如果数据量比较大,在内存进行连接操会发生OOM.mapreduce join可以用来解决大数据的连接. 1 思路 1.1 reduce join 在map阶段, 把关键字作为key输出,并在value中标记出数据是来自data1还是data2.因为在shuffle阶段已经自然按key分组,reduce阶段,判断每一个value是来自data1还是data2,在…
1. 概述. 本文主要介绍了mapreduce框架上如何实现两表JOIN. 2. 常见的join方法介绍 假设要进行join的数据分别来自File1和File2. 2.1 reduce side join reduce side join是一种最简单的join方式,其主要思想如下: 在map阶段,map函数同时读取两个文件File1和File2,为了区分两种来源的key/value数据对,对每条数据打一个标签 (tag),比如:tag=0表示来自文件File1,tag=2表示来自文件File2.…
一.Map端Join 可连接两个都非常大的数据集之间可使用map端连接,数据在到达map端之前就执行连接操作. 需满足: 两个要连接的数据集都先划分成相同数量的分区,相同的key要保证在同一分区中(每个分区中两个数据集数据量不一定要要相同), 并且要 按连接key排序:  利用CompositeInputFormat类,可实现map端连接: 代码参考:GitHub上Join示例 其它参考:hadoop实现join (CompositeInputFormat) 参考2 二.Reduce端连接 Re…
Reduce join 原理 Map端的主要工作:为来自不同表(文件)的key/value对打标签以区别不同来源的记录.然后用连接字段作为key,其余部分和新加的标志作为value,最后进行输出. Reduce端的主要工作:在reduce端以连接字段作为key的分组已经完成,我们只需要在每一个分组当中将那些来源于不同文件的记录(在map阶段已经打标志)分开,最后进行合并就ok了 需求 订单数据表t_order id pid amount 商品信息表t_product pid pname 小米 华…
上次和朋友讨论到mapreduce,join应该发生在map端,理由太想当然到sql里面的执行过程了 wheremap端 join在map之前(笛卡尔积),但实际上网上看了,mapreduce的笛卡尔积发生在reduce端,下面哥们有个实现过程可以参考(http://blog.csdn.net/xyilu/article/details/8996204).有空再看看 实际上实现过程是不是和他写的代码一样.             前阵子把MapReduce实现join操作的算法设想清楚了,但一直…
一.对于二次排序案例部分理解 1. 分析需求(首先对第一个字段排序,然后在对第二个字段排序) 杂乱的原始数据 排序完成的数据 a,1 a,1 b,1 a,2 a,2 [排序] a,100 b,6 ===> b,-3 c,2 b,-2 b,-2 b,1 a,100 b,6 b,-3 c,-7 c,-7 c,2 2. 分析[MapRedice过程] 1> 分析数据传入通过input()传入map() 2> map()对数据进行层层过滤,以达到我们想要的数据源, 3> 过滤方法中可添加自…
MapReduce Join 对两份数据data1和data2进行关键词连接是一个很通用的问题,如果数据量比较小,可以在内存中完成连接. 如果数据量比较大,在内存进行连接操会发生OOM.mapreduce join可以用来解决大数据的连接. 1 思路 1.1 reduce join 在map阶段, 把关键字作为key输出,并在value中标记出数据是来自data1还是data2.因为在shuffle阶段已经自然按key分组,reduce阶段,判断每一个value是来自data1还是data2,在…
在关系型数据库中Join是非常常见的操作,各种优化手段已经到了极致.在海量数据的环境下,不可避免的也会碰到这种类型的需求,例如在数据分析时需要从不同的数据源中获取数据.不同于传统的单机模式,在分布式存储下采用MapReduce编程模型,也有相应的处理措施和优化方法. 我们先简要地描述待解决的问题.假设有两个数据集:气象站数据库和天气记录数据库 气象站的示例数据,如下 Station ID Station Name 011990-99999 SIHCCAJAVRI 012650-99999 TRN…
二次排序 在Hadoop中,默认情况下是按照key进行排序,如果要按照value进行排序怎么办?即:对于同一个key,reduce函数接收到的value list是按照value排序的.这种应用需求在join操作中很常见,比如,希望相同的key中,小表对应的value排在前面.有两种方法进行二次排序,分别为:buffer and in memory sort和 value-to-key conversion.对于buffer and in memory sort,主要思想是:在reduce()函…
MapReduce Join 对两份数据data1和data2进行关键词连接是一个很通用的问题,如果数据量比较小,可以在内存中完成连接. 如果数据量比较大,在内存进行连接操会发生OOM.mapreduce join可以用来解决大数据的连接. 1 思路 1.1 reduce join 在map阶段, 把关键字作为key输出,并在value中标记出数据是来自data1还是data2.因为在shuffle阶段已经自然按key分组,reduce阶段,判断每一个value是来自data1还是data2,在…
不多说,直接上代码. 天气记录数据库 Station ID Timestamp Temperature 气象站数据库 Station ID Station Name 气象站和天气记录合并之后的示意图如下所示. Station ID Station Name Timestamp Temperature 011990-99999 SIHCCAJAVRI 195005150700 0 011990-99999 SIHCCAJAVRI 195005151200 22 011990-99999 SIHCC…
Sample data: student.txt 1,yaoshuya,25 2,yaoxiaohua,29 3,yaoyuanyie,15 4,yaoshupei,26 Sample data:score.txt 1,yuwen,100 1,shuxue,99 2,yuwen,99 2,shuxue,88 3,yuwen,99 3,shuxue,56 4,yuwen,33 4,shuxue,99 输出文件内容: 1    [yaoshuya,25,yuwen,100] 1    [yaoshu…
转载请在页首明显处注明作者与出处 一:说明 此为大数据系列的一些博文,有空的话会陆续更新,包含大数据的一些内容,如hadoop,spark,storm,机器学习等. 当前使用的hadoop版本为2.6.4 此为mapreducer的第二章节 这一章节中有着 计算共同好友,推荐可能认识的人 上一篇:hadoop系列三:mapreduce的使用(一) 一:说明 二:在开发工具在运行mapreducer 2.1:本地模式运行mapreducer 2.2:在开发工具中运行在yarn中 三:mapredu…
一.MapJoin-DistributedCache 应用 1.mapreduce join 介绍 在各种实际业务场景中,按照某个关键字对两份数据进行连接是非常常见的.如果两份数据 都比较小,那么可以直接在内存中完成连接.如果是大数据量的呢? 显然,在内存中进行连 接会发生 OOM. MapReduce 可以用来解决大数据量的链接MapReduce 的 Join 操作主要分两类: MapJoin 和 ReduceJoin 先看 ReduceJoin:(1)map 阶段,两份数据 data1 和…
Chapter 5. Join Patterns 把数据保存成一个巨大的数据集不是很常见.例如,用户信息数据频繁更新,所以要保存到关系数据库中.于此同时,web日志以恒定的数据流量增加,直接写到HDFS.这些日志的日常分析过的数据保存在hdfs的某个地方,财务数据存储在加密的仓库中.还有很多例子... (原文are stored someone where in HDFS 貌似应改为 are stored somewhere in HDFS) 数据遍布于各处,本身也很有价值.当我们合起来分析这些…
过时的属性:Deprecated Properties 该列表保存于:hadoop-2.7.3-src\hadoop-common-project\hadoop-common\src\site\markdown 目录 下表列出了在这个版本的Hadoop过时的配置属性的名称,和它们的替代名称. Deprecated property name New property name create.empty.dir.if.nonexist mapreduce.jobcontrol.createdir.…
鉴于目前大数据Hadoop 2.x被企业广泛使用,在实际的企业项目中需要更加深入的灵活运用,并且Hadoop 2.x是大数据平台处理 的框架的基石,尤其在海量数据的存储HDFS.分布式资源管理和任务调度YARN及分布式计算框架MapReduce.然而当前众多书籍和 视频教程资料中,没有一套完整的.深入浅出的.实战性操作强的一套资料,一此种情况下,结合鄙人多年实际项目经验,以项目中 使用为主线,编纂筹划此套Hadoop 2.x从零基础到项目实战的课程,带领大家从零基础开始上手,到如何理解HDFS.…
Deprecated Properties  弃用属性 The following table lists the configuration property names that are deprecated in this version of Hadoop, and their replacements. 下表列出了在这个版本的Hadoop中被弃用的配置属性名称及其替换. 说明: 基于 Hadoop 2.7.4 Deprecated property name 已经被遗弃属性的名称 Ne…
搭建好环境之后 ,就来跑个简单的Mapreduce试试看吧.这个比第一课难多了,需要多多练习并熟练掌握. 需要编写py脚本以及shell脚本, 所以需要学习Python和Linux的Shell编程. 虽然现在可以照抄老师的代码,但是代码有些方面还不太懂,更不能够理解透彻.所以,需要继续学习python 以下是笔记,  bash shell和py都写在同一个文本文件中,仅以空行隔开: # MapReduce基础 # 海量都能处理, GTP级都能处理,理论上是没有瓶颈的. # 一次性同时处理整个数据…
join连接 MapReduce能够执行大型数据集间的连接(join)操作.连接操作的具体实现技术取决于数据集的规模及分区方式连接操作如果由mapper执行,则称为“map端连接”:如果由reducer执行,则称为“reduce端连接”. Map端连接 在两个大规模输入数据集之间的map端连接会在数据到达map函数之前就执行连接操作.为达到该目的,各map的输入数据必须先分区并且以特定方式排序.各个输入数据集被划分成相同数量的分区,并且均按相同的键(连接键)排序.同一键的所有记录均会放在同一分区…
转自:http://blog.csdn.net/wh_springer/article/details/51842496 近十年来,随着Hadoop生态系统的不断完善,Hadoop早已成为大数据事实上的行业标准之一.   1  Hive基本原理 Hadoop是一个流行的开源框架,用来存储和处理商用硬件上的大规模数据集.对于HDFS上的海量日志而言,编写Mapreduce程序代码对于类似数据仓库的需求来说总是显得相对于难以维护和重用,Hive作为一种基于Hadoop的数据仓库解决方案应运而生,并得…
最近看了关于 SQL Server 的分布式处理方面的论文,觉得它提出的 Polybase 跟之前看过的 HadoopDB 有些神似,这里做个小总结(抽空再把 HadoopDB 的总结贴出来). 不算翻译,只是挑出自己认为是重点的部分.详细情况,还请论文查阅原文,引用中有写明出处.文章末尾有我总结的 slides,可以辅助查阅. 由于缺乏实践经验,很多东西未必能理解其本质.如有其他观点,还请多指教. 当下的计划就是开始自己搭环境,实践起来!~ 背景 商业应用中,越来越多的需要将结构化数据和非结构…
1.1.1         map端连接-CompositeInputFormat连接类 (1)使用CompositeInputFormat连接类需要满足三个条件: 1)两个数据集都是大的数据集,不能用缓存文件的方式. 2)数据集都是按照相同的键进行排序: 3)数据集有相同的分区数,同一个键的所有记录在同一个分区中,输出文件不可分割: 要满足这三个条件,输入数据在达到map端连接函数之前,两个数据集被reduce处理,reduce任务数量相同都为n,两个数据集被分区输出到n个文件,同一个键的所有…
 在关系型数据库中,要实现join操作是非常方便的,通过sql定义的join原语就可以实现.在hdfs存储的海量数据中,要实现join操作,可以通过HiveQL很方便地实现.不过HiveQL也是转化成MapReduce来完成操作,本文首先研究如何通过编写MapReduce程序来完成join操作. 一.Map-Join:在Reduce端完成的join操作  假设存在用户数据文件users.txt和用户登录日志数据文件login_logs.txt,数据内容分别如下所示:  用户数据文件user.tx…
转载自:http://zengzhaozheng.blog.51cto.com/8219051/1392961 1.在Reudce端进行连接. 在Reudce端进行连接是MapReduce框架进行表之间join操作最为常见的模式,其具体的实现原理如下: Map端的主要工作:为来自不同表(文件)的key/value对打标签以区别不同来源的记录.然后用连接字段作为key,其余部分和新加的标志作为value,最后进行输出. reduce端的主要工作:在reduce端以连接字段作为key的分组已经完成,…
文章为作者原创,未经许可,禁止转载.    -Sun Yat-sen University 冯兴伟 一.    项目简介: 电子商务的发展以及电商平台的多样化,类似于京东和天猫这种拥有过亿用户的在线购物网站,每天要处理的订单数堪称海量,更别提最近的双十一购物节,如此海量的订单数据阿里巴巴和京东是如何准确将用户信息和其订单匹配并配货的呢?答案是数据连接匹配.我的云计算项目idea也是来源于此.我们在做数据分析时常要连接从不同的数据源中获取到的数据,单机模式下的关系型数据库中我们会遇到这问题,同样在…
前段时间有一个业务需求,要在外网商品(TOPB2C)信息中加入 联营自营 识别的字段.但存在的一个问题是,商品信息 和 自营联营标示数据是 两份数据:商品信息较大,是存放在hbase中.他们之前唯一的关联是url.所以考虑用url做key将两者做join,将 联营自营标识 信息加入的商品信息中,最终生成我需要的数据: 一,首先展示一下两份数据的demo example 1. 自营联营标识数据(下面开始就叫做unionseller.txt) http://cn.abc.www/product436…
4.1.2 复制连接(Replication join) 复制连接是map端的连接.复制连接得名于它的具体实现:连接中最小的数据集将会被复制到所有的map主机节点.复制连接有一个假设前提:在被连接的数据集中,有一个数据集足够小到可以缓存在内存中. 如图4.5所示,MapReduce复制连接工作原理如下: 使用分布式缓存(Districubted cache)将这个小数据集复制到所有运行map任务的节点. 用各个map任务初始化方法将这个小数据集装载到一个哈希表(hashtable)中. 逐条用大…
转自:http://blog.csdn.net/leoleocmm/article/details/8602081 1. 概述 在传统数据库(如:MYSQL)中,JOIN操作是非常常见且非常耗时的.而在HADOOP中进行JOIN操作,同样常见且耗时,由于Hadoop的独特设计思想,当进行JOIN操作时,有一些特殊的技巧. 本文首先介绍了Hadoop上通常的JOIN实现方法,然后给出了几种针对不同输入数据集的优化方法. 2. 常见的join方法介绍 假设要进行join的数据分别来自File1和Fi…
4.1 连接(Join) 连接是关系运算,可以用于合并关系(relation).对于数据库中的表连接操作,可能已经广为人知了.在MapReduce中,连接可以用于合并两个或多个数据集.例如,用户基本信息和用户活动详情信息.用户基本信息来自于OLTP数据库.用户活动详情信息来自于日志文件. MapReduce的连接操作可以用于以下场景: 用户的人口统计信息的聚合操作(例如:青少年和中年人的习惯差异). 当用户超过一定时间没有使用网站后,发邮件提醒他们.(这个一定时间的阈值是用户自己预定义的) 分析…