Training: Encodings I (Training, Encoding) We intercepted this message from one challenger to another, maybe you can find out what they were talking about. To help you on your progress I coded a small java application, called JPK. Note: The message i…
We intercepted this message from one challenger to another, maybe you can find out what they were talking about.To help you on your progress I coded a small java application, called JPK.Note: The message is most likely in english. 1010100110100011010…
题意 从$0$到$n-1$的数字里可重复的取至多$m$个数的和等于$k$的方案数. 思路 显然的生成函数的思路为构造 $(1+x+x^{2}+...+x^{n-1})^{m}$ 那么$x^{k}$的系数即答案.等比数列求和后得到 $ \frac {(1-x^n)^m} {(1-x)^m}$ 对分子二项式展开得到 $(1-x^n)^m = \sum_{i=0}^m C_m^{i}(-1)^i * x^{n*i}$ 对分母根据泰勒展开得到 $(1-x)^{-m} = \sum_{j = 0}^{\i…
In this little training challenge, you are going to learn about the Robots_exclusion_standard.The robots.txt file is used by web crawlers to check if they are allowed to crawl and index your website or only parts of it.Sometimes these files reveal th…
A:签到题 B!:搜索+DP #include<bits/stdc++.h> #define mp make_pair #define pi pair<int,int> using namespace std; ]={-,,,}; ]={,,-,}; ][][],v[][],a[][],bx,by,ex,ey,n,m,l; pi q[]; ]; void bfs(int k) { ,r=; ; i<=n; i++) ; j<=m; j++) if (a[i][j]) {…
A:约瑟夫环 套公式 B:线性筛素数 C:投骰子 概率DP F:有权无向图的生成树(边最大值和最小值只差最小) 直接kruskal G:状压BFS或者双向BFS H:模拟题 I:几何题 J:高斯消元…
A:二分答案 如果中位数比目前的大就right=mid-1 else left=mid+1 C!:几何 G:优先队列贪心 #include <bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<LL, int> pii; ]; int main() { scanf("%d%d", &n, &k); ; i <= n; i++) { scanf(&quo…
A:正着DFS一次处理出每个节点有多少个优先级比他低的(包括自己)作为值v[i] 求A B 再反着DFS求优先级比自己高的求C #include <bits/stdc++.h> #include <cstring> #include <iostream> #include <algorithm> #define EPS 1.0e-9 #define PI acos(-1.0) #define INF 30000000 #define MOD 10000000…
A!:UESTC1752 B!:找区间内L到R之间内的数的个数  权值分块加莫队 C!:给你一个哈斯图 去掉其中的几条边 要求输出字典序最大的拓扑排序:线段树模拟拓扑排序 D!:要求你找到最短路树并输出 E:SG函数 F:求出偶数和奇数的个数套公式 G:要求你从两个set里找出符合要求两个数 找规律 I:找规律 用二进制模拟生成的规律 J:找规律 直接暴力模拟次数%周期后剩下的 K:区间DP/贪心 尽量把最小的给最大位 L:一棵树中各个节点被染上了c[i]颜色; 让你在一棵树中随便选一个节点作为…
This is the most basic image stegano I can think of. 解题: 一张小图片,文本方式打开.…
目录 0x01 Wechall writeup Limited Access Training: Crypto - Caesar II Impossible n'est pas français Training: Crypto - Substitution I Limited Access Too PHP 0818 Training: Net Ports Training: Encodings I Training: Baconian Training: Crypto - Digraphs T…
Training: Crypto - Caesar I (Crypto, Training) Crypto - Caesar I As on most challenge sites, there are some beginner cryptos, and often you get started with the good old caesar cipher. I welcome you to the WeChall style of these training challenges :…
Your task is to decode the following: %59%69%70%70%65%68%21%20%59%6F%75%72%20%55%52%4C%20%69%73%20%63%68%61%6C%6C%65%6E%67%65%2F%74%72%61%69%6E%69%6E%67%2F%65%6E%63%6F%64%69%6E%67%73%2F%75%72%6C%2F%73%61%77%5F%6C%6F%74%69%6F%6E%2E%70%68%70%3F%70%3D%6…
As on most challenge sites, there are some beginner cryptos, and often you get started with the good old caesar cipher.I welcome you to the WeChall style of these training challenges :) Enjoy! VJG SWKEM DTQYP HQZ LWORU QXGT VJG NCBA FQI QH ECGUCT CPF…
Timing delays in a double data rate (DDR) dynamic random access memory (DRAM) controller (114, 116) are trained. A left edge of passing receive enable delay values is determined (530). A final value of a receive data strobe delay value and a final va…
前言: 开始打CTF,掌握一些新的姿势与知识. 这里我选择的平台是Wechall.这里从简单到难 WP部分: Training: Get SourcedAnswer: 查看网页源代码 Training: Stegano IAnswer 这里有张图片,下载.用十六进制打开获得password Training: Crypto - Caesar IAnswer 题目提示凯撒密码加密.这里感谢一下群里某位师傅发的进制转换器.很好用 Training: WWW-Robots (HTTP, Trainin…
目录 0x00 Wechall writeup Training: Get Sourced Training: ASCII Encodings: URL Training: Stegano I Training: WWW-Robots Training: Crypto - Caesar I PHP 0817 Prime Factory Training: MySQL I Stegano Attachment Zebra Training: Crypto - Transposition I hi…
今天开始打一打wechall 累了打wechall,不累的时候开始打buu 第一题:Get Sourced 查看源代码即可,拉到底部 第二题:Stegano 属于misc的范畴,直接下载下来,然后notepad++查看,在最后有一个passwd:steganoI 直接丢上去提交即可 第三题: Crypto - Caesar 凯撒密码,位移一位 是英文,is后面那一串就是密码 第四题:WWW-Robots 根据提示,直接http://www.wechall.net/robots.txt 然后读取之…
package com.android.filebrowser;   import java.io.*; import java.net.*;   public class FileEncodingDetect {     static final int GB2312 = 0;     static final int ASCII = 1;     static final int UTF8 = 2;     static final int UNICODE = 3;     //static…
方案1: 更改项目的Encoding方式 File -> Settings -> Editor,  choose "File Encodings", change Project Encoding to UTF-8. 方案2: 由于app的版本为release找不到keystore文件,我们只需要在app下的build.gradle文件中修改为signingConfigs.debug即可: buildTypes { release { signingConfig signi…
package com.android.filebrowser;   import java.io.*; import java.net.*;   public class FileEncodingDetect {     static final int GB2312 = 0;     static final int ASCII = 1;     static final int UTF8 = 2;     static final int UNICODE = 3;     //static…
MarkdownPad Document html,body,div,span,applet,object,iframe,h1,h2,h3,h4,h5,h6,p,blockquote,pre,a,abbr,acronym,address,big,cite,code,del,dfn,em,img,ins,kbd,q,s,samp,small,strike,strong,sub,sup,tt,var,b,u,i,center,dl,dt,dd,ol,ul,li,fieldset,form,label…
MarkdownPad Document html,body,div,span,applet,object,iframe,h1,h2,h3,h4,h5,h6,p,blockquote,pre,a,abbr,acronym,address,big,cite,code,del,dfn,em,img,ins,kbd,q,s,samp,small,strike,strong,sub,sup,tt,var,b,u,i,center,dl,dt,dd,ol,ul,li,fieldset,form,label…
目录 Transformer Network Packages 1 - Positional Encoding 1.1 - Sine and Cosine Angles Exercise 1 - get_angles 1.2 - Sine and Cosine Positional Encodings Exercise 2 - positional_encoding Additional Hints 2 - Masking 2.1 - Padding Mask 2.2 - Look-ahead…
For some Java container types JAXB has no built-in mapping to an XML structure. Also, you may want to represent Java types in a way that is entirely different from what JAXB is apt to do. Such mappings require an adapter class, written as an extensio…
卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目录 1.应用场景 2.卷积神经网络结构 2.1 卷积(convelution) 2.2 Relu激活函数 2.3 池化(pool) 2.4 全连接(full connection) 2.5 损失函数(softmax_loss) 2.6 前向传播(forward propagation) 2.7 反向…
catalogue . 个人理解 . 基本使用 . MNIST(multiclass classification)入门 . 深入MNIST . 卷积神经网络:CIFAR- 数据集分类 . 单词的向量表示(Vector Representations of Words) . 循环神经网络(RNN).LSTM(Long-Short Term Memory, LSTM) . 用深度学习网络搭建一个聊天机器人 0. 个人理解 在学习的最开始,我在这里写一个个人对deep leanring和神经网络的粗…
Machine Learning Crash Course  |  Google Developers https://developers.google.com/machine-learning/crash-course/ Google's fast-paced, practical introduction to machine learning ML Concepts Introduction to Machine Learning As you'll discover, machine…
<Hands-on ML with Sklearn & TF> Chapter 1 what is ml from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E. what problems to solve exist solution but a…
Ahmet Taspinar Home About Contact Building Convolutional Neural Networks with Tensorflow Posted on augustus 15, 2017 adminPosted in convolutional neural networks, deep learning, tensorflow 1. Introduction In the past I have mostly written about ‘clas…