深入理解F1-score】的更多相关文章

当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解释准确率并不是衡量模型好坏的唯一指标,同时我也会对其他衡量指标做出一些简单说明. 首先我们先要了解混淆矩阵(Confusion Matrix), 如下图,混淆矩阵经常被用来衡量一个分类模型在测试样本上的性能,本文提到的所有衡量标准都会用到下面混淆矩阵中出现的的四个值 真正例和真反例表示被正确预测的数据…
1. 四个概念定义:TP.FP.TN.FN 先看四个概念定义: - TP,True Positive - FP,False Positive - TN,True Negative - FN,False Negative 如何理解记忆这四个概念定义呢? 举个简单的二元分类问题 例子: 假设,我们要对某一封邮件做出一个判定,判定这封邮件是垃圾邮件.还是这封邮件不是垃圾邮件? 如果判定是垃圾邮件,那就是做出(Positive)的判定: 如果判定不是垃圾邮件,那就做出(Negative)的判定. Tru…
https://medium.com/@thongonary/how-to-compute-f1-score-for-each-epoch-in-keras-a1acd17715a2 https://datascience.stackexchange.com/questions/13746/how-to-define-a-custom-performance-metric-in-keras/20192 In training a neural network, f1 score is an im…
题目链接   时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和他的小伙伴们一起写了很多代码.时间一久有些代码究竟是不是自己写的,小Hi也分辨不出来了. 于是他实现了一个分类算法,希望用机器学习实现自动分类. 为了评价这个分类算法的优劣,他选出了N份有标记的代码作测试集,并决定用F1 Score作为评价标准. 给出N份代码的实际作者是不是小Hi以及分类算法预测的结果,请你计算F1 Score. 输入 第一行包含一个整数N.(1 <= N <= 1000) 以…
一.基础 疑问1:具体使用算法时,怎么通过精准率和召回率判断算法优劣? 根据具体使用场景而定: 例1:股票预测,未来该股票是升还是降?业务要求更精准的找到能够上升的股票:此情况下,模型精准率越高越优. 例2:病人诊断,就诊人员是否患病?业务要求更全面的找出所有患病的病人,而且尽量不漏掉一个患者:甚至说即使将正常人员判断为病人也没关系,只要不将病人判断成健康人员就好.此情况,模型召回率越高越优. 疑问2::有些情况下,即需要考虑精准率又需要考虑召回率,二者所占权重一样,怎么中欧那个判断? 方法:采…
F1 score,micro F1score,macro F1score 的定义 2018年09月28日 19:30:08 wanglei_1996 阅读数 976   本篇博客可能会继续更新 最近在文献中经常看到precesion,recall,常常忘记了他们的定义,在加上今天又看到评价多标签分类任务性能的度量方法micro F1score和macro F2score.决定再把F1 score一并加进来把定义写清楚,忘记了再来看看. F1score F1score(以下简称F1)是用来评价二元…
tf.keras.metric 里面竟然没有实现 F1 score.recall.precision 等指标,一开始觉得真不可思议.但这是有原因的,这些指标在 batch-wise 上计算都没有意义,需要在整个验证集上计算,而 tf.keras 在训练过程中计算 acc.loss 都是一个 batch 计算一次的,最后再平均起来.Keras 2.0 版本将 precision, recall, fbeta_score, fmeasure 等 metrics 移除了. 虽然 tf.keras.me…
F1 score 关于精准率和召回率 精准率和召回率可以很好的评价对于数据极度偏斜的二分类问题的算法,有个问题,毕竟是两个指标,有的时候这两个指标也会产生差异,对于不同的算法,精准率可能高一些,召回率可能低一些,反之一样,真正使用的时候应该根据具体的使用场景来去解读这两个指标 想要得到这两个指标之间的平衡,希望能同时照顾到精准率和召回率,这样就可以使用新的指标,F1 score F1 score的目的就是兼顾这两个指标,描述的是精准率和召回率的调和平均值,公式可以写成 这种的好处就是,如果说一个…
SVM分类器里面的东西好多呀,碾压前两个.怪不得称之为深度学习出现之前表现最好的算法. 今天学到的也应该只是冰山一角,懂了SVM的一些原理.还得继续深入学习理解呢. 一些关键词: 超平面(hyper plane)SVM的目标就是找到一个超平面把两类数据分开.使边际(margin)最大.如果把超平面定义为w*x+b=0.那么超平面距离任意一个支持向量的距离就是1/||w||.(||w||是w的范数,也就是√w*w’) SVM就是解决 这个优化问题.再经过拉格朗日公式和KKT条件等数学运算求解得到一…
sklearn中的classification_report函数用于显示主要分类指标的文本报告.在报告中显示每个类的精确度,召回率,F1值等信息. 主要参数: y_true:1维数组,或标签指示器数组/稀疏矩阵,目标值. y_pred:1维数组,或标签指示器数组/稀疏矩阵,分类器返回的估计值. labels:array,shape = [n_labels],报表中包含的标签索引的可选列表. target_names:字符串列表,与标签匹配的可选显示名称(相同顺序). sample_weight:…