[GAN] Generative networks】的更多相关文章

中文版:https://zhuanlan.zhihu.com/p/27440393 原文版:https://www.oreilly.com/learning/generative-adversarial-networks-for-beginners “熟练tensorflow后,需研读实践的文章” 自从两年前蒙特利尔大学的Ian Goodfellow等人提出生成式对抗网络(Generative Adversarial Networks,GAN)的概念以来,GAN呈现出井喷式发展. // 竟然是G…
参考: https://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for=pc Generative Adversarial Network GAN基础和优点 这些惊艳的工作基本都是2016年8月甚至10月以后的,也就是 GAN 被提出两年后.这是因为,虽然 GAN 有非常吸引人的性质,想要训练好它并不容易.经过两年的摸索.思考与尝试,才有了如今的积累和突破. 那么这个非常吸引人的 GAN 是什么样呢.其实 GAN 最初让人“…
https://www.bilibili.com/video/av9770302/?p=15 前面说了auto-encoder,VAE可以用于生成 VAE的问题, AE的训练是让输入输出尽可能的接近,所以生成出来图片只是在模仿训练集,而无法生成他完全没有见过的,或新的图片 由于VAE并没有真正的理解和学习如何生成新的图片,所以对于下面的例子,他无法区分两个case的好坏,因为从lost上看都是比7多了一个pixel 所以产生GAN, 大家都知道GAN是对抗网络,是generator和discri…
Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章主要介绍Gan的应用篇,3,主要介绍图像应用,4, 主要介绍文本以及医药化学其他领域应用 原理篇请看上两篇 https://www.cnblogs.com/Libo-Master/p/11167804.html https://www.cnblogs.com/Libo-Master/p/11169198.html ------------------------------------------…
Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章会先从Gan的简单应用示例讲起,从三个方面问题以及解决思路覆盖25篇GAN论文,第二个大部分会进一步讲Gan的所有领域应用 ----------------------------------------------------------------------------------- 1: 下图GAN可以学到不同的字体,并且在字体之间进行不同的变换 2 下图可以用简笔画可以用GAN帮助生成想…
一文读懂对抗生成学习(Generative Adversarial Nets)[GAN] 0x00 推荐论文 https://arxiv.org/pdf/1406.2661.pdf 0x01什么是gan Generative model G用来生成样本 Discriminative model D用来区别G生成样本的真假 G努力的方向是生成出以假乱真的样本,让D认为这样本是人类给的而不是G创造的,D则相反. 一个更加形象的比喻 小时候老师让试卷上家长签字,以确保家长看过我那卑微的成绩.于是乎我尽…
How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While research in Generative Adversarial Networks (GANs) continues to improve the fundamental stability of these models, we use a bunch of tricks to train th…
同步自我的知乎专栏文章:https://zhuanlan.zhihu.com/p/32135185 从Slerp说起 ICLR'2017的投稿里,有一篇很有意思但被拒掉的投稿<Sampling Generative Networks> by Tom White.文章比较松散地讲了一些在latent space挺有用的采样和可视化技巧,其中一个重要的点是指出在GAN的latent space中,比起常用的线性插值,沿着两个采样点之间的"弧"进行插值是更合理的办法.实现的方法就…
生成对抗网络(Generative Adversarial Networks,GANs),由2014年还在蒙特利尔读博士的Ian Goodfellow引入深度学习领域.2016年,GANs热潮席卷AI领域顶级会议,从ICLR到NIPS,大量高质量论文被发表和探讨.Yann LeCun曾评价GANs是"20年来机器学习领域最酷的想法". Generative Adversarial Nets(GAN) Generative Adversarial Networks论文提出了一种通过对抗过…
图像识别和自然语言处理是目前应用极为广泛的AI技术,这些技术不管是速度还是准确度都已经达到了相当的高度,具体应用例如智能手机的人脸解锁.内置的语音助手.这些技术的实现和发展都离不开神经网络,可是传统的神经网络只能解决关于辨识的问题,并不能够为机器带来自主创造的能力,例如让机器写出一篇流畅的新闻报道,生成一副美丽的风景画.但随着GAN的出现,这些都成为了可能. 什么是GAN? 生成式对抗网络(GAN, Generative Adversarial Networks)是一种近年来大热的深度学习模型,…