Download datasets iris_training.csv from:https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/monitors Method: SVR # -*- coding: utf-8 -*- import pandas as pd from sklearn.grid_search import GridSearchCV from sklearn imp…
本实例展示怎样使用cross_val_predict来可视化预测错误: # coding:utf-8 from pylab import * from sklearn import datasets from sklearn.model_selection import cross_val_predict from sklearn import linear_model lr = linear_model.LinearRegression() boston = datasets.load_bos…
git:https://github.com/linyi0604/MachineLearning 如何确定一个模型应该使用哪种参数? k折交叉验证: 将样本分成k份 每次取其中一份做测试数据 其他做训练数据 一共进行k次训练和测试 用这种方式 充分利用样本数据,评估模型在样本上的表现情况 网格搜索: 一种暴力枚举搜索方法 对模型参数列举出集中可能, 对所有列举出的可能组合进行模型评估 从而找到最好的模型参数 并行搜索: 由于每一种参数组合互相是独立不影响的 所有可以开启多线程进行网格搜索 这种方…
机器学习 数据挖掘 数据集划分 训练集 验证集 测试集 Q:如何将数据集划分为测试数据集和训练数据集? A:three ways: 1.像sklearn一样,提供一个将数据集切分成训练集和测试集的函数: 默认是把数据集的75%作为训练集,把数据集的25%作为测试集. 2.交叉验证(一般取十折交叉验证:10-fold cross validation) k个子集,每个子集均做一次测试集,其余的作为训练集. 交叉验证重复k次,每次选择一个子集作为测试集,并将k次的平均交叉验证识别正确率作为结果. 3…
1.交叉验证 交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合.有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法. 于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证. 一开始的子集被称为训练集.而其它的子集则被称为验证集或测试集. 交叉验证是一种评估统计分析.机器学习算法对独立于训练数据的数据集的泛化能力(generalize).交叉验证一般要尽量满足: 1)训练集的比例要足够多,一般大于一半2)训练集和测试集…
上一回有个读者问我:回归模型与分类模型的区别在哪?有什么不同,我在这里给他回答一下 : : : : 回归问题通常是用来预测一个值,如预测房价.未来的天气情况等等,例如一个产品的实际价格为500元,通过回归分析预测值为499元,我们认为这是一个比较好的回归分析.   分类问题是用于将事物打上一个标签.分类有多个特征,一个标签  .例如判断一幅图片上的动物是一只猫还是一只狗,分类通常是建立在回归之上,分类的最后一层通常要使用softmax函数进行判断其所属类别.分类并没有逼近的概念,最终正确结果只有…
首先说交叉验证.交叉验证(Cross validation)是一种评估统计分析.机器学习算法对独立于训练数据的数据集的泛化能力(generalize), 能够避免过拟合问题.交叉验证一般要尽量满足:1)训练集的比例要足够多,一般大于一半2)训练集和测试集要均匀抽样 交叉验证主要分成以下几类: 1)Double cross-validationDouble cross-validation也称2-fold cross-validation(2-CV),作法是将数据集分成两个相等大小的子集,进行两回…
一.网格搜索,在我们不确定超参数的时候,需要通过不断验证超参数,来确定最优的参数值.这个过程就是在不断,搜索最优的参数值,这个过程也就称为网格搜索. 二.检查验证,将准备好的训练数据进行平均拆分,分为训练集和验证集.训练集和验证集的大小差不多,总体份数通过手动设置.具体过程为: 由上图可以得知,训练集和验证集是通过交叉的方式去不断训练,这样的目的就是为了获取,更加优化的参数值. 三.代码演示(这里我们通过K-近邻的算法.来确认参数值): # K-近邻算法 def k_near_test(): #…
案例背景 银行评判用户的信用考量规避信用卡诈骗 ▒ 数据 数据共有 31 个特征, 为了安全起见数据已经向了模糊化处理无法读出真实信息目标 其中数据中的 class 特征标识为是否正常用户 (0 代表正常, 1 代表异常) ▒ 目标 本质依旧是一个分类问题, 0/1 的问题判断是否为信用卡诈骗用户 而在数据中 class 已经进行标识, 而且这次的样本数据的两项结果是极度的不均衡 既正常用户的样本数量是远远大于异常数据的. 不均衡的数据处理方式可以进行 下采样, 或者上采样 ▨ 下采样 -  对…
在机器学习模型中,需要人工选择的参数称为超参数.比如随机森林中决策树的个数,人工神经网络模型中隐藏层层数和每层的节点个数,正则项中常数大小等等,他们都需要事先指定.超参数选择不恰当,就会出现欠拟合或者过拟合的问题.而在选择超参数的时候,有两个途径,一个是凭经验微调,另一个就是选择不同大小的参数,带入模型中,挑选表现最好的参数. 微调的一种方法是手工调制超参数,直到找到一个好的超参数组合,这么做的话会非常冗长,你也可能没有时间探索多种组合,所以可以使用Scikit-Learn的GridSearch…
前两篇博客分别对拉勾中关于 python 数据分析有关的信息进行获取(https://www.cnblogs.com/lyuzt/p/10636501.html)和对获取的数据进行可视化分析(https://www.cnblogs.com/lyuzt/p/10643941.html),这次我们就用 sklearn 对不同学历和工作经验的 python 数据分析师做一个简单的工资预测.由于在前面两篇博客中已经了解了数据集的大概,就直接进入正题. 一.对薪资进行转换 在这之前先导入模块并读入文件,不…
在上一篇关于Python中的线性回归的文章之后,我想再写一篇关于训练测试分割和交叉验证的文章.在数据科学和数据分析领域中,这两个概念经常被用作防止或最小化过度拟合的工具.我会解释当使用统计模型时,通常将模型拟合在训练集上,以便对未被训练的数据进行预测. 在统计学和机器学习领域中,我们通常把数据分成两个子集:训练数据和测试数据,并且把模型拟合到训练数据上,以便对测试数据进行预测.当做到这一点时,可能会发生两种情况:模型的过度拟合或欠拟合.我们不希望出现这两种情况,因为这会影响模型的可预测性.我们有…
机器学习技术在应用之前使用“训练+检验”的模式(通常被称作”交叉验证“). 预测模型为何无法保持稳定? 让我们通过以下几幅图来理解这个问题: 此处我们试图找到尺寸(size)和价格(price)的关系.三个模型各自做了如下工作: 第一个模型使用了线性等式.对于训练用的数据点,此模型有很大误差.这样的模型在初期排行榜和最终排行榜都会表现不好.这是“拟合不足”(“Under fitting”)的一个例子.此模型不足以发掘数据背后的趋势. 第二个模型发现了价格和尺寸的正确关系,此模型误差低/概括程度高…
1. train_test_split(under_x, under_y, test_size=0.3, random_state=0)  # under_x, under_y 表示输入数据, test_size表示切分的训练集和测试集的比例, random_state 随机种子 2. KFold(len(train_x), 5, shuffle=False)  # len(train_x) 第一个参数数据数据大小, 5表示切分的个数,即循环的次数, shuffle表示是否进行打乱数据 3. r…
本篇博客代码来自于<动手学深度学习>pytorch版,也是代码较多,解释较少的一篇.不过好多方法在我以前的博客都有提,所以这次没提.还有一个原因是,这篇博客的代码,只要好好看看肯定能看懂(前提是python语法大概了解),这是我不加很多解释的重要原因. K折交叉验证实现 def get_k_fold_data(k, i, X, y): # 返回第i折交叉验证时所需要的训练和验证数据,分开放,X_train为训练数据,X_valid为验证数据 assert k > 1 fold_size…
在训练深度学习模型的时候,通常将数据集切分为训练集和验证集.Keras提供了两种评估模型性能的方法: 使用自动切分的验证集 使用手动切分的验证集 一.自动切分 在Keras中,可以从数据集中切分出一部分作为验证集,并且在每次迭代(epoch)时在验证集中评估模型的性能. 具体地,调用model.fit()训练模型时,可通过validation_split参数来指定从数据集中切分出验证集的比例. # MLP with automatic validation set from keras.mode…
def datastandard(): from sklearn import preprocessing import numpy as np x = np.array([ [ 1., -1., 2.], [ 2., 0., 0.], [ 0., 1., -1.]]) print('原始数据为:\n',x) print('method1:指定均值方差数据标准化(默认均值0 方差 1):') print('使用scale()函数 按列标准化') x_scaled = preprocessing.…
来自:https://www.zhihu.com/question/35649122 其实这里所说的数据量不足,可以换一种方式去理解:在维度高的情况下,数据相对少.举一个特例,比如只有一维,和1万个数据,那么这种情况下,我们可以认为数据量其实是足够的,因为数据密度相对来说很高.如果数据的维度有1000维,数据量仍然有1万,这种情况下,数据的密度就相当低了. 引用wiki里的两句话:- The common theme of these problems is that when the dime…
python数据分析数据标准化及离散化详解 本文为大家分享了python数据分析数据标准化及离散化的具体内容,供大家参考,具体内容如下 标准化 1.离差标准化 是对原始数据的线性变换,使结果映射到[0,1]区间.方便数据的处理.消除单位影响及变异大小因素影响. 基本公式为:     x'=(x-min)/(max-min) 代码:     #!/user/bin/env python #-*- coding:utf-8 -*- #author:M10 import numpy as np imp…
数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间.目前数据标准化方法有多种,归结起来可以分为直线型方法(如极值法.标准差法).折线型方法(如三折线法).曲线型方法(如半正态性分布).不同的标准化方法,对系统的评价结果会产生不同的影响,然而不幸的是,在数据标准化方法的选择上,还没有通用的法则可以遵循. 常见的方法有:min-max标准化(Min-max normalization),log函数转换,atan函数转换,z-score标准化(zero-mena n…
最近在学习机器学习中的K近邻算法, KNeighborsClassifier 看似简单实则里面有很多的参数配置, 这些参数直接影响到预测的准确率. 很自然的问题就是如何找到最优参数配置? 这就需要用到GridSearchCV 网格搜索模型. 在没有学习到GridSearchCV 网格搜索模型之前, 寻找最优参数配置是通过人为改变参数, 来观察预测结果准确率的. 具体步骤如下: 修改参数配置 fit 训练集 预测测试集 预测结果与真实结果对比 重复上述步骤 GridSearchCV 网格搜索模型寻…
1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 1.2 距离公式 两个样本的距离可以通过如下公式计算,又叫欧式距离. 简单理解这个算法: 这个算法是用来给特征值分类的,是属于有监督学习的领域,根据不断计算特征值和有目标值的特征值的距离来判断某个样本是否属于某个目标值. 可以理解为根据你的邻居来判断你属于哪个类别. 1.3 API sklea…
0.交叉验证 交叉验证的基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set or test set),首先用训练集对分类器进行训练,再利用验证集来测试训练得到的模型(model),以此来做为评价分类器的性能指标. 交叉验证用在数据不是很充足的时候.比如在我日常项目里面,对于普通适中问题,如果数据样本量小于一万条,我们就会采用交叉验证来训练优化选择模型.如果样本大于一万条的话,我们一般随机的把数据分…
GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大的时候可以使用一个快速调优的方法——坐标下降.它其实是一种贪心算法:拿当前对模型影响最大的参数调优,直到最优化:再拿下一个影响最大的参数调优,如此下去,直到所有的参数调整完毕.这个方法的缺点就是可能会调到局部最优而不是全局最优,但是省时间省力,巨大的优势面前,还是试一试吧,后续可以再拿bagging…
GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大的时候可以使用一个快速调优的方法——坐标下降.它其实是一种贪心算法:拿当前对模型影响最大的参数调优,直到最优化:再拿下一个影响最大的参数调优,如此下去,直到所有的参数调整完毕.这个方法的缺点就是可能会调到局部最优而不是全局最优,但是省时间省力,巨大的优势面前,还是试一试吧,后续可以再拿bagging…
什么是Grid Search 网格搜索? Grid Search:一种调参手段:穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果.其原理就像是在数组里找最大值.(为什么叫网格搜索?以有两个参数的模型为例,参数a有3种可能,参数b有4种可能,把所有可能性列出来,可以表示成一个3*4的表格,其中每个cell就是一个网格,循环过程就像是在每个网格里遍历.搜索,所以叫grid search) Simple Grid Search:简单的网格搜索 以2个参数的…
交叉验证是模型比较选择的一种常用方法,本文对此进行总结梳理. 1.交叉验证的基本思想 交叉验证(cross validation)的基本思想就是重复地利用同一份数据. 2.交叉验证的作用 1)通过划分训练集和测试集,一定程度上减小了过拟合: 2)重复使用数据,尽可能多的从样本集上得到有用的信息. 3.交叉验证的主要方法 3.1 简单交叉验证 简单交叉验证,又称为留出法(hold-out),是指直接将样本集划分成两个互斥的计划,其中一个作为训练集(training set),另外一个作为测试集(t…
sklearn中的交叉验证(Cross-Validation) sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好.今天主要记录一下sklearn中关于交叉验证的各种用法,主要是对sklearn官方文档 Cross-validation: evaluating estimator performance进行讲解,英文水平好的建议读官方文档,里面的知识点很详细. 1. cross_val_score对数据集进行指定次数的交叉验证并为每次验证效果评测其中,sco…
这个repo 用来记录一些python技巧.书籍.学习链接等,欢迎stargithub地址sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好.今天主要记录一下sklearn中关于交叉验证的各种用法,主要是对sklearn官方文档 Cross-validation: evaluating estimator performance进行讲解,英文水平好的建议读官方文档,里面的知识点很详细. 先导入需要的库及数据集In [1]: import numpy as n…
GridSearchCV用于系统地遍历模型的多种参数组合,通过交叉验证确定最佳参数. 1.GridSearchCV参数    # 不常用的参数 pre_dispatch 没看懂 refit 默认为True 在参数搜索参数后,用最佳参数的结果fit一遍全部数据集 iid 默认为True 各个样本fold概率分布一致,误差估计为所有样本之和 # 常用的参数 cv 默认为3 指定fold个数,即默认三折交叉验证 verbose 默认为0 值为0时,不输出训练过程:值为1时,偶尔输出训练过程:值>1时,…