【SVD、特征值分解、PCA关系】】的更多相关文章

一.SVD    1.含义: 把矩阵分解为缩放矩阵+旋转矩阵+特征向量矩阵. A矩阵的作用是将一个向量从V这组正交基向量的空间旋转到U这组正交基向量的空间,并对每个方向进行了一定的缩放,缩放因子就是各个奇异值,如果V维度比U大,则说明进行了投影. SVD分解表示把旋转.缩放.特征向量分离出来. 二.SVD与奇异值   1.计算上: U的列为AAT的正交特征向量 V的列为ATA的正交特征向量 2.含义上: 都是抽取一个矩阵的主要部分 3.不同点: 特征值分解只有缩放,没有旋转:所有矩阵都可以奇异值…
一.介绍 特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性.就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜,这样寥寥的几个特征,就让别人脑海里面就有一个较为清楚的认识,实际上,人脸上的特征是有着无数种的,之所以能这么描述,是…
特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法.两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征. 1. 特征值: 如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式: 写成矩阵形式: 这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量. 2. 特征分解: 特征值分解是将一个矩阵分解成下面的形式: 其中Q是这个矩阵A的特征向量组成的矩阵,正交矩阵是可逆的.Σ = diag(λ1, λ2,…
特征值分解 函数 eig 格式 d = eig(A)         %求矩阵A的特征值d,以向量形式存放d. d = eig(A,B)       %A.B为方阵,求广义特征值d,以向量形式存放d. [V,D] = eig(A)      %计算A的特征值对角阵D和特征向量V,使AV=VD成立. [V,D] = eig(A,'nobalance')   %当矩阵A中有与截断误差数量级相差不远的值时,该指令可能更精确.'nobalance'起误差调节作用. [V,D] = eig(A,B)   …
1.特征值分解 主要还是调包: from numpy.linalg import eig 特征值分解:  A = P*B*PT  当然也可以写成 A = QT*B*Q  其中B为对角元为A的特征值的对角矩阵,P=QT, 首先A得对称正定,然后才能在实数域上分解, >>> A = np.random.randint(-10,10,(4,4)) >>> A array([[ 6, 9, -10, -1], [ 5, 9, 5, -5], [ -8, 7, -4, 4], […
1.使用QR分解获取特征值和特征向量 将矩阵A进行QR分解,得到正规正交矩阵Q与上三角形矩阵R.由上可知Ak为相似矩阵,当k增加时,Ak收敛到上三角矩阵,特征值为对角项. 2.奇异值分解(SVD) 其中U是m×m阶酉矩阵:Σ是半正定m×n阶对角矩阵:而V*,即V的共轭转置,是n×n阶酉矩阵. 将矩阵A乘它的转置,得到的方阵可用于求特征向量v,进而求出奇异值σ和左奇异向量u. #coding:utf8 import numpy as np np.set_printoptions(precision…
Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge which I have learned before is forgot...(呜呜) 1.Terminology 单位矩阵:identity matrix 特征值:eigenvalues 特征向量:eigenvectors 矩阵的秩:rank 对角矩阵:diagonal matrix 对角化矩阵…
1. 引入包 2. 实现矩阵分解 3. 从分量还原矩阵…
一.SVD奇异值分解的定义 假设是一个的矩阵,如果存在一个分解: 其中为的酉矩阵,为的半正定对角矩阵,为的共轭转置矩阵,且为的酉矩阵.这样的分解称为的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩阵,称为右奇异矩阵. 二.SVD奇异值分解与特征值分解的关系 特征值分解与SVD奇异值分解的目的都是提取一个矩阵最重要的特征.然而,特征值分解只适用于方阵,而SVD奇异值分解适用于任意的矩阵,不一定是方阵. 这里,和是方阵,和为单位矩阵,为的特征向量,为的特征向量.和的特征值为的奇异值的平方. 三.…