广义线性回归模型 广义线性回归模型 例题1 R.Norell实验 为研究高压电线对牲畜的影响,R.Norell研究小的电流对农场动物的影响.他在实验中,选择了7头,6种电击强度, 0,1,2,3,4,5毫安,每头牛被电击30下,每种强度5下,按随机的次序进行,然后重复整个实验,每头牛总共被电击60下.对每次电击,相应变量--嘴巴运动,或者出现,或者未出现.下表中的数据给出每种电击强度70次试验中响应的总次数.试分析电击对牛的影响 电流(毫安) 试验次数 响应次数 响应的比例 0 70 0 0.0…
回归诊断 回归诊断 1.样本是否符合正态分布假设? 2.是否存在离群值导致模型发生较大误差? 3.线性模型是否合理? 4.误差是否满足独立性.等方差.正态分布等假设条件? 5.是否存在多重共线性 正态分布检验:函数shapiro.test() P>0.05,正态分布 例题1 Anscomber数据 数据 1-3 1 2 3 4 4 号 X Y Y Y X Y 1 10.0 8.04 9.14 7.46 8.0 6.58 2 8.0 6.95 8.14 6.77 8.0 5.76 3 13.0 7…
多重共线性(线性代数叫线性相关) 多重共线性(线性代数叫线性相关) 1.什么是多重共线性 2.多重共线性对回归模型的影响 3.利用计算特征根发现多重共线性 4.Kappa()函数 例题1 考虑一个有六个回归自变量的线性回归问题,原始数据列在下表中,这里共有12组数据,除第一组外,自变量的其余11组数据满足线性关系 试用求矩阵条件数的方法,分析出自变量间存在多重共线性. 序号 1 10.006 8.000 1.000 1.000 1.000 0.541 -0.099 2 9.737 8.000 1…
逐步回归 向前引入法:从一元回归开始,逐步加快变量,使指标值达到最优为止 向后剔除法:从全变量回归方程开始,逐步删去某个变量,使指标值达到最优为止 逐步筛选法:综合上述两种方法 多元线性回归的核心问题:应该选择哪些变量? RSS(残差平方和)与R2(相关系数平方)选择法:遍历所有可能的组合,选出使RSS最小,R2最大的模型 AIC(Akaike information criterion)准则和BIC(Bayesian information criterion)准则 AIC=n×ln(RSSP…
> x=iris[which(iris$Species=="setosa"),1:4] > plot(x) 首先是简单的肉眼观察数据之间相关性 多元回归相较于一元回归的最主要困难可能就是变量的选择,如下面的例子 使用Swiss数据集(R内置) Swiss Fertility and Socioeconomic Indicators(1888) Data 建立多元线性回归 > s=lm(Fertility~.,data=swiss) > print(s) Call…
R语言的各种分布函数 rnorm(n,mean=0,sd=1)#高斯(正态) rexp(n,rate=1)#指数 rgamma(n,shape,scale=1)#γ分布 rpois(n,lambda)#Poisson分布 rweibull(n,location=0,scale=1)#Weibull分布 rcauchy(n,location=0,scale=1)#Cauchy分布 rbeta(n,shape1,shape2)#β分布 rt(n,df)#t分布 rf(n,df1,df2)#F分布 r…
因子分析 因子分析 降维的一种方法,是主成分分析的推广和发展 是用于分析隐藏在表面现象背后的因子作用的统计模型.试图用最少的个数的不可测的公共因子的线性函数与特殊因子之和来描述原来观测的每一分量 因子分析的主要用途 减少分析变量的个数 通过对变量间相关关系的探测,将原始变量分组,即将相关性高的变量分为一组,用共性因子来代替该变量 使问题背后的业务因素的意义更加清晰呈现 与主成分分析的区别 主成分分析侧重"变异量",通过转换原始变量为新的组合变量使到数据的"变异量"最…
PART 1 PART 1 传统回归模型的困难 1.为什么一定是线性的?或某种非线性模型? 2.过分依赖于分析者的经验 3.对于非连续的离散数据难以处理 网格方法 <Science>上的文章<Detecting Novel Associations in Large Data Sets> 方法概要:用网格判断数据的集中程度,集中程度意味着是否有关联关系 方法具有一般性,即无论数据是怎样分布的,不限于特点的关联函数类型,此判断方法都是有效 方法具有等效性,计算的熵值和噪音的程度有关,…
连线图 > a=c(2,3,4,5,6) > b=c(4,7,8,9,12) > plot(a,b,type="l") 多条曲线效果 plot(rain$Tokyo,type="l",col="red",ylim=c(0,300), main="Monthly Rainfall in major cities", xlab="Month of Year", ylab="Rainf…
创建向量矩阵 > x1=c(2,3,6,8) > x2=c(1,2,3,4) > a1=(1:100) > length(a1) [1] 100 > length(x1) [1] 4 > mode(x1) [1] "numeric" > rbind(x1,x2) [,1] [,2] [,3] [,4] x1 2 3 6 8 x2 1 2 3 4 > cbind(x1,x2) x1 x2 [1,] 2 1 [2,] 3 2 [3,] 6 3…
主成分分析 主成分分析 Pearson于1901年提出的,再由Hotelling(1933)加以发展的一种多变量统计方法 通过析取主成分显出最大的个别差异,也用来削减回归分析和聚类分析中变量的数目 可以使用样本协方差矩阵或相关系数矩阵作为出发点进行分析 成分的保留:Kaiser主张(1960)将特征值小于1的成分放弃,只保留特征值大于1的成分 如果能用不超过3-5个成分就能解释变异的80%,就算是成功 通过对原是变量进行线性组合,得到优化的指标 把原先多个指标的计算降维为少量几个经过优化指标的计…
基于密度的方法:DBSCAN 基于密度的方法:DBSCAN DBSCAN=Density-Based Spatial Clustering of Applications with Noise 本算法将有足够高密度的区域划分为簇,并可以发现任何形状的聚类 若干概念 r-邻域:给定点半径r内的区域 核心点:如果一个点的r-邻域至少包含最少数目M个点,则称该点为核心点 直接密度可达:如果点p在核心点q的r-邻域内,则称p是从q出发可以直接密度可达 如果存在点链是从关于r和M直接密度可达 ,则称点p是…
基于有代表性的点的技术:K中心聚类法 基于有代表性的点的技术:K中心聚类法 算法步骤 随机选择k个点作为"中心点" 计算剩余的点到这个k中心点的距离,每个点被分配到最近的中心点组成聚簇 随机选择一个非中心点,用它代替某个现有的中心点,计算这个代换的总代价S 如果S<0,则用代替,形成新的k个中心点集合 重复2,直至中心点集合不发生变化 K中心法的实现:PAM PAM使用离差平方和来计算成本S(类似于ward距离的计算) R语言的cluster包实现了PAM K中心法的优点:对于&…
聚类 聚类 关键度量指标:距离 常用距离 绝对值距离 绝对值距离也称为"棋盘距离"或"城市街区距离". 欧氏(Euclide)距离 闵可夫斯基(Minkowski)距离 不难看出绝对值距离和Euclide距离是Minkowski距离的特例 当各变量的单位不同或测量值的范围相差很大时,不应直接采用Minkowski距离,而应先对各变量的数据作标准化处理,然后再用标准化后的数据进行计算 切比雪夫(Chebyshev)距离 它是Minkowski距离中的情况 马氏(Mah…
> library(maps) > library(geosphere) 载入需要的程辑包:sp > map("state")#画美国地图 > map("world")#画世界地图 > xlim<-c(-171.738281,-56.601563) > ylim<-c(12.039321,71.856229) > map("world",col="#f2f2f2",fill…
题目:模拟产生统计专业同学的名单(学号区分),记录数学分析.线性代数.概率统计三科成绩,然后进行一些统计分析 > num=seq(10378001,10378100) > num [1] 10378001 10378002 10378003 10378004 10378005 10378006 10378007 10378008 [9] 10378009 10378010 10378011 10378012 10378013 10378014 10378015 10378016 [17] 10…
动态聚类:K-means方法 动态聚类:K-means方法 算法 选择K个点作为初始质心 将每个点指派到最近的质心,形成K个簇(聚类) 重新计算每个簇的质心 重复2-3直至质心不发生变化 kmeans()函数 > X=iris[,1:4]> km=kmeans(X,3)> kmK-means clustering with 3 clusters of sizes 62, 50, 38Cluster means: Sepal.Length Sepal.Width Petal.Length…
支持向量机(SVM) 支持向量机(SVM) 问题的提出:最优分离平面(决策边界) 优化目标 决策边界边缘距离最远 数学模型 问题转化为凸优化 拉格朗日乘子法--未知数太多 KKT变换和对偶公式 问题的解决和神经网络化 对偶公式是二次规划问题,有现成的数值方法可以求解 大部分的拉格朗日乘子为0,不为0的对应于"支持向量"(恰好在边界上的样本点) 只要支持向量不变,修改其他样本点的值,不影响结果,当支持变量发生改变时,结果一般就会变化 求解出拉格朗日乘子后,可以推出w和b,判别函数可以写成…
非线性模型 非线性模型 例子:销售额x与流通费率y > x=c(1.5,2.8,4.5,7.5,10.5,13.5,15.1,16.5,19.5,22.5,24.5,26.5)> y=c(7.0,5.5,4.6,3.6,2.9,2.7,2.5,2.4,2.2,2.1,1.9,1.8)> plot(x,y) 1.直线回归 > lm.1=lm(y~x)> summary(lm.1)Call:lm(formula = y ~ x)Residuals: Min 1Q Median 3…
# 婚外情数据集 data(Affairs, package = "AER") summary(Affairs) table(Affairs$affairs) # 用二值变量,是或否 Affairs$ynaffair[Affairs$affairs > ] <- Affairs$ynaffair[Affairs$affairs == ] <- Affairs$ynaffair <- factor(Affairs$ynaffair, levels = c(, ),…
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论.这其中可能包括了因为更好的家庭条件,所以有了更好的教育:因为在一线城市发展,所以有了更好的工作机会:所处的行业赶上了大的经济上行周期等.要想解读这些规律,是复杂的.多维度的,多元回归分析方法更适合解读生活的规律. 由于本文为非统计的专业…
转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体重,普遍来看越高的人体重也越重.还有一些可能存在相关性的事件,比如知识水平越高的人,收入水平越高:市场化的国家经济越好,则货币越强势,反而全球经济危机,黄金等避险资产越走强. 如果我们要研究这些事件,找到不同变量之间的关系,我们就会用到回归分析.一元线性回归分析是处理两个变量之间关系的最简单模型,是…
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的常见准则有: 1.      均方误差(mean squared error,MSE): 2.      平均绝对误差(mean absolute error,MAE) 3.      R2 score:scikit learn线性回归模型的缺省评价准则,既考虑了预测值与真值之间的差异,也考虑了问题…
本章开始学习第一个有监督学习模型--线性回归模型."线性"在这里的含义仅限定了模型必须是参数的线性函数.而正如我们接下来要看到的,线性回归模型可以是输入变量\(x\)的非线性函数. 书中首先对回归问题给出了一个简短的不那么正式的定义: Given a training data set comprising \(N\) observations \(\{x_n\}\), where \(n = 1, ... , N\), together with corresponding targ…
广义线性回归 > life<-data.frame( + X1=c(2.5, 173, 119, 10, 502, 4, 14.4, 2, 40, 6.6, + 21.4, 2.8, 2.5, 6, 3.5, 62.2, 10.8, 21.6, 2, 3.4, + 5.1, 2.4, 1.7, 1.1, 12.8, 1.2, 3.5, 39.7, 62.4, 2.4, + 34.7, 28.4, 0.9, 30.6, 5.8, 6.1, 2.7, 4.7, 128, 35, + 2, 8.5,…
一些问题: 1. 什么时候我的问题可以用GLM,什么时候我的问题不能用GLM? 2. GLM到底能给我们带来什么好处? 3. 如何评价GLM模型的好坏? 广义线性回归啊,虐了我快几个月了,还是没有彻底搞懂,看paper看代码的时候总是一脸懵逼. 大部分分布都能看作是指数族分布,广义差不多是这个意思,我们常见的线性回归和logistic回归都是广义线性回归的特例,可以由它推到出来. 参考:线性回归.logistic回归.广义线性模型——斯坦福CS229机器学习个人总结(一) 对着上面的教程,手写了…
思路:在数据上选择一条直线y=Wx+b,在这条直线上附件随机生成一些数据点如下图,让TensorFlow建立回归模型,去学习什么样的W和b能更好去拟合这些数据点. 1)随机生成1000个数据点,围绕在y=0.1x+0.3 周围,设置W=0.1,b=0.3,届时看构建的模型是否能学习到w和b的值. import numpy as np import tensorflow as tf import matplotlib.pyplot as plt num_points=1000 vectors_se…
处理缺失数据的高级方法 15.1 处理缺失值的步骤 一个完整的处理方法通常包含以下几个步骤: (1) 识别缺失数据: (2) 检查导致数据缺失的原因: (3) 删除包含缺失值的实例或用合理的数值代替(插补)缺失值. 缺失数据的分类: (1) 完全随机缺失:若某变量的缺失数据与其他任何观测或未观测变量都不相关,则数据为完全随机缺失(MCAR) (2) 随机缺失:若某变量上的缺失数据与其他观测变量相关,与它自己的未观测值不相关,则数据为随机缺失(MAR) (3) 非随机缺失 若缺失数据不属于MCAR…
1.Numpy: Numpy是python科学计算的基础包,它提供以下功能(不限于此): (1)快速高效的多维数组对象naarray (2)用于对数组执行元素级计算以及直接对数组执行数学运算的函数 (3)用于读写硬盘上基于数组的数据集的工具 (4)线性代数运算.傅里叶变换,以及随机数生成 (5)用于将C.C++.Fortran代码集成到python的工具 2.pandas pandas提供了使我们能够快速便捷地处理结构化数据的大量数据结构和函数.pandas兼具Numpy高性能的数组计算功能以及…
 内容概要 怎样使用pandas读入数据 怎样使用seaborn进行数据的可视化 scikit-learn的线性回归模型和用法 线性回归模型的评估測度 特征选择的方法 作为有监督学习,分类问题是预測类别结果,而回归问题是预測一个连续的结果. 1. 使用pandas来读取数据 Pandas是一个用于数据探索.数据处理.数据分析的Python库 In [1]: import pandas as pd In [2]: # read csv file directly from a URL and…