Google大脑科学家贾杨清(Caffe缔造者)-微信讲座 机器学习Caffe 贾扬清 caffe   一.讲座正文: 大家好!我是贾扬清178,目前在Google Brain69,今天有幸受雷鸣师兄邀请来和大家聊聊Caffe48.没有太多准备,所以讲的不好的地方还请大家谅解. 我用的ppt671基本上和我们在CVPR上要做的tutorial是类似的,所以大家如果需要更多的内容的话,可以去tutorial.caffe.berkeleyvision.org,也欢迎来参加我们的tutorial:)…
谷歌大脑科学家 Caffe缔造者 贾扬清 微信讲座完整版 一.讲座正文: 大家好!我是贾扬清237,目前在Google Brain83,今天有幸受雷鸣师兄邀请来和大家聊聊Caffe60.没有太多准备,所以讲的不好的地方还请大家谅解. 我用的ppt808基本上和我们在CVPR上要做的tutorial是类似的,所以大家如果需要更多的内容的话,可以去tutorial.caffe.berkeleyvision.org,也欢迎来参加我们的tutorial:) 网页上应该还有一些python的样例帮助大家上…
[转:http://blog.csdn.net/buaalei/article/details/46344675] 大家好!我是贾扬清,目前在Google Brain,今天有幸受雷鸣师兄邀请来和大家聊聊Caffe.没有太多准备,所以讲的不好的地方还请大家谅解.我用的ppt基本上和我们在CVPR上要做的tutorial是类似的,所以大家如果需要更多的内容的话,可以去tutorial.caffe.berkeleyvision.org,也欢迎来参加我们的tutorial:)网页上应该还有一些Pytho…
一.讲座正文:大家好!我是贾扬清,目前在Google Brain,今天有幸受雷鸣师兄邀请来和大家聊聊Caffe.没有太多准备,所以讲的不好的地方还请大家谅解.我用的ppt基本上和我们在CVPR上要做的tutorial是类似的,所以大家如果需要更多的内容的话,可以去tutorial.caffe.berkeleyvision.org,也欢迎来参加我们的tutorial:)网页上应该还有一些python的样例帮助大家上手,所以欢迎参观.ppt比较长,所以我想我主要就介绍一下背景以及high level…
问答环节 问:在finetuning的时候,新问题的图像大小不同于pretraining的图像大小,只能缩放到同样的大小吗?" 答:对的:) 问:目前dl在时序序列分析中的进展如何?研究思路如何,能简单描述一下么答:这个有点长,可以看看google最近的一系列machine translation和image description的工作. 问:2个问题:1.目前Caffe主要面对CV或图像的任务,是否会考虑其它任务,比如NLP?2.如果想学习Caffe代码的话,能给一些建议吗?答:Caffe的…
Caffe在Linux下的安装,编译,实验  原文地址:http://www.cnblogs.com/evansyang/p/6150118.html 第一部分:Caffe 简介 caffe是有伯克利视觉和学习中心(BVLC)开发.作者是伯克利博士贾杨清.caffe是一个深度学习(deep learning)框架.其具有易读.快速和模块化思想. 第二部分:Caffe安装与配置 2.1 配置环境:ubuntu 14.04LTS, 使用Homebrew进行安装.暂不使用GPU,所以使用CPU-ONL…
最近,在看caffe源码时,偶然在网上看到一个问题?觉得挺有意思,于是,仔细的查了相关资料,并将总结写在这里,供大家迷惑时,起到一点启示作用吧. 问题的题目是CNN中的一个卷积层输入64个通道的特征子图,输出256个通道的特征子图,那么,该层一共包含多少个卷积核? 对于上面这个问题,目前有两种答案,每一种答案的区别是所基于的卷积核的维度不同而导致的.下面是两种答案的解析过程: 第一种答案:卷积核是二维的(caffe源码中以卷积核二维转化成相应矩阵),那么就需要64*256个卷积核来对输入特征子图…
这里大致说一下caffe.caffe是伯里克利大学的贾杨清教授写的一个深度学习框架,使用C++编写的,但同时也提供python和matlab接口:组成部分主要有: (1)Blob:用来存储数据和梯度: (2)Layer:网络的层: (3)Net: 网络结构,即存储权值等参数: (4)Solver:存储学习率等超参数: caffe大致流程为: (1)数据转换:即对输入的数据进行预处理,转换成我们需要的格式: (2)define Net (3)define Solver (4)Train 我这里在V…
近年来,深度学习框架如雨后春笋般的涌现出来,如TensorFlow.caffe.caffe2.PyTorch.Keras.Theano.Torch等,对于从事计算机视觉/机器学习/图像处理方面的研究者或者教育者提高了更高的要求.其中Pytorch是Torch的升级版,其有非常优秀的前端和灵活性,相比TensorFlow不用重复造轮子,易于Debug调试,极大的提高开发效率,使得其在其他框架中脱颖而出.更多信息参见:caffe2+Pytorch1.0 = Pytorch1.0,期待即将推出的1.0…
[转:http://www.csdn.net/article/2015-07-07/2825150] 在深度学习(Deep Learning)的热潮下,Caffe作为一个高效.实用的深度学习框架受到了广泛的关注.了解Caffe研发的背景.愿景.技术特色.路线图及其开发者的理念,对于我们选择合适的工具更好地进行深度学习应用的迭代开发大有裨益.<程序员>记者近日深度对话Caffe作者贾扬清,剖析Caffe的起源.目标.差异性.现存的一些问题和改进工作,以及未来的规划. 起源故事 <程序员&g…